percubes!

ean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Finding Lean Induced Cycles in Binary Hypercubes

Yury Chebiryak¹ Daniel Kroening²

Thomas Wahl² Leopold Haller²

¹Computer Systems Institute, ETH Zurich, Switzerland ²Computing Laboratory, Oxford University, UK

SAT 2009 - Twelfth International Conference on Theory and Applications of Satisfiability Testing June 30 - July 3, 2009, Swansea, Wales, United Kingdom.

> This research was supported in part by an award from IBM Research and by ETH Research Grant TH-19 06-3.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation •••••• ercubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Chinese Ring Puzzle

aka. The Devils Needle Puzzle aka. Cardan's rings

Figure adopted from [Knuth'05]

Empty the bar by

- 1. removing or replacing rightmost ring or
- 2. moving any ring if right ring is on bar and rest are off

s! Lean In

Propositional SAT Encoding

Classification

Conclusion

Binary Reflected Gray Code

Gray codes applications:

- analog to digital information conversion
- error correction
- circuit testing
- signal encoding
- data compression
- diagnosis of multiprocessors
- computational biology (e.g. [Glass'77,Zinovik+07])

Figure adopted from [Knuth'05]

percubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Gene Regulatory Networks

Gene interaction using wiring diagrams:

atopted from [Fisher+05]

rcubes! Le

duced Cycles Prop

Propositional SAT Encoding

Classification

Conclusion

Ordinary Differential Equations (ODE)

- We consider *n* genes, where each gene has a product
- Let *x_i* denote the concentration of the product of gene *i*
- Dynamics:

$$\dot{x}_i = -g_i(x_1, \dots, x_n) - \gamma_i x_i \quad \text{for } 1 \le i \le n,$$

where

 $\gamma_i > 0$: degradation rate of x_i $g_i : \mathbb{R}^n_{\geq 0} \to \mathbb{R}_{\geq 0}$: coupling

Motivation Hypercubes!

Lean Induced C

Propositional SAT Encoding

Classification

Conclusion

Glass Model

Gene activity is *on/off* only The general form of a Glass network is

$$\dot{x}_i = G_i(\tilde{x}_1, \dots, \tilde{x}_n) - \alpha x_i \text{ for } 1 \le i \le n$$

where

- α > 0,
- *G_i*: interaction functions,

•
$$\tilde{x}_i = \begin{cases} a : \text{ if } x_i < \theta_i \\ b : \text{ if } x_i > \theta_i \end{cases}$$

• with real constants a < b

lypercubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

From phase flow to hypercubes

Phase Flow

percubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

From phase flow to hypercubes

Phase Flow

Transition Diagram

Motivation	Hypercubes!	Lean Induced Cycles	Propositional SAT Encoding	Classification	Conclusio	
Hypercube						

$$Q_1 = K_2, \quad Q_n = K_2 \times Q_{n-1}$$

Motivation	Hypercubes!	Lean Induced Cycles	Propositional SAT Encoding	Classification	Conclusion
		Нур	percube		

$$Q_1 = K_2, \quad Q_n = K_2 \times Q_{n-1}$$

Motivation H	lypercubes!	Lean Induced Cycles	Propositional SAT Encoding	Classification	Conclusion
0	V O	Нур	ercube		

Motivation	Hypercubes!	Lean Induced Cycles	Propositional SAT Encoding	Classification	Conclusion
		Ну	percube		
Q_1	$= K_2, Q_n$	$= K_2 \times Q_{n-1}$			

Periodic trajectories of Glass networks \sim cycles in hypercubes A *cyclic attractor* = induced cycle, edges oriented toward

Lean Induced Cycles Propo

Propositional SAT Encoding

Classification

Conclusion

Induced cycle: Example

Initial node: 000,

Hypercubes!

Lean Induced Cycles

Propositional SAT Encoding

Induced cycle: Example

Initial node: 000, Transition sequence: 1, 2

Hypercubes!

Induced cycle: Example

Propositional SAT Encoding

Initial node: 000, Transition sequence: 1, 2, 3

Lean Induced Cycles

Hypercubes!

lassification

Conclusion

Induced cycle: Example

Propositional SAT Encoding

Initial node: 000, Transition sequence: 1, 2, 3, 1

Lean Induced Cycles

Hypercubes!

classification

Conclusion

vation Hypercubes! Lean Induced Cycles Propositional SAT Encoding Classificat oo Induced cycle: Example

Initial node: 000, Transition sequence: 1, 2, 3, 1, 2, 3

Conclusio

Lean Induced Cycles Pro

Propositional SAT Encoding

Classification

Conclusion

Hamming Distance, Paths on Hypercube

For two nodes W_k and W_l of *n*-cube Hamming distance

$$d_H(W_k, W_l) = \left| \{ i \mid W_k[i] \neq W_l[i] \} \right|,$$

Path $P = W_0, W_1, \ldots, W_{L-1}$ of length L,

$$\forall j \in \{0, 1, \dots, L-2\}. \ d_H(W_j, W_{j+1}) = 1.$$

Cycle

Hypercubes!

$$\forall j \in \{0, 1, \dots, L-1\}. \ d_H(W_j, W_{j+1 \mod L}) = 1.$$

Definition

The *cyclic distance* $d_C(W_j, W_k)$ of two nodes W_j and W_k of a cycle of length *L* in an *n*-cube is

$$d_C(W_j, W_k) = \min\{|k-j|, L-|j-k|\}.$$

[Suparta06]

Hypercubes!

Induced cycle: Definition

Definition

0.

An *induced cycle* $I_0, I_1, \ldots, I_{L-1}$ in an *n*-cube is a cycle such that any two nodes on the cycle are adjacent in the *n*-cube only if they are neighbours on the cycle:

$$orall j, k \in \{0, 1, \dots, L-1\}.$$

 $d_H(I_j, I_k) < 2 \Longrightarrow d_C(I_j, I_k) < 2$

otivation Hype

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Lean induced cycles: Example in 4D

Node 1101 is shunned

lotivation

cubes! Le

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Lean induced cycles: shunned nodes

Definition

A node *W* is shunned if and only if it is not adjacent to any node of a cycle:

$$\forall i \in \{0, \ldots, L-1\}. d_H(W, I_i) > 1$$

Goal: maximize number of shunned nodes

Solution: use SAT solver

Notivation

rcubes!

ean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Propositional SAT: Advantages

- definite answer
- provably correct (satisfying assignment or proof)
- easy to modify encoding
- easy to add new constraints
- can benefit from theoretical results
- enumeration/classification (ALL-SAT)

/percubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Encoding induced cycles:

Input	dimension n , length L
Coordinates	$(n \cdot L)$ boolean variables $I_j[k]$, where $0 \le j < L$ and $0 \le k < n$
Transition seq	$(n \cdot L)$ XOR gates $xor^{k,k+1}[l]$
Cycle	$\bigwedge_{j=0}^{L-1} d_H(I_j, I_{j+1 \bmod L}) = 1$
Chordless	$\bigwedge_{j=0}^{L-3}\bigwedge_{k=j+2}^{L-1} d_H(I_j,I_k) > 1$

How to encode d_H efficiently?

Iotivation

Lean Inc

Propositional SAT Encoding

Classification

Conclusion

Encoding induced cycles: Once-twice predicates

- *once*^{A,B} at least one of *xor*^{A,B}[*i*] is enabled
- *twice*^{A,B} at least two ...
- $d_H(A,B) = 1$ is encoded as

$$once^{A,B} \land \neg twice^{A,B}$$

• $d_H(A,B) > 1$ as $once^{A,B} \wedge twice^{A,B}$

• and $d_H(A,B) \ge 1$ as

 $once^{A,B}$

variety of encodings: OR-tree, long clause, etc.

es! Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Encoding induced cycles: Hamming distance

[Chebiryak&Kroening, JSAT'2008]

Classification

Conclusion

Encoding shunned nodes

Lean induced cycle I_0, \ldots, I_{L-1} with at least S shunned nodesCoordinatesS Boolean vectors $s_0, \ldots s_{S-1}$ of length nDisjoint $\bigwedge_{0 \le i < j \le S-1}$ $d_H(s_i, s_j) \ge 1$ Shunned $\bigwedge_{i=0}^{S-1} \bigwedge_{i=0}^{L-1}$ $d_H(s_i, I_j) > 1$

Equivalence relation

Two cycles equivalent = transition sequences identical by

- permutation of axes
- reflection
- rotation

Example: 1, 2, 3, 1, 2, 3, \sim 1, 3, 2, 1, 3, 2

(left rotation by 1)	$1, 2, 3, 1, 2, 3 \sim 2, 3, 1, 2, 3, 1$
(reflection)	$\sim 1,3,2,1,3,2$
$\pi(1,2,3) = (1,3,2)$	$1, 2, 3, 1, 2, 3 \sim 1, 3, 2, 1, 3, 2$

Classification: ALL-SAT with blocking clauses for every equivalent cycle

Propositional SAT Encoding

Classification

Conclusion

Equivalence classes computation using SAT

Use ALL-SAT to compute $|IC(n, L, \geq U)|$, then

$$|IC(n,L,k)| = |IC(n,L, \geq k)| - |IC(n,L, \geq k+1)|$$

Scalability issues

• Too many blocking clauses per class:

 $(2L \cdot n!) = 25920$ for n = 6, L = 18

- Multiplied by number of classes (1228)
 = 30 millions blocking clauses.
- ALL-SAT is done when UNSAT is reached.
- \Rightarrow reduce number of blocking clauses per class

ercubes!

ean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Symmetric Gray codes

Symmetric transition sequence:

 $t_1, t_2, \ldots, t_m, t_1, t_2, \ldots, t_m$

 \Rightarrow rotations by $\frac{L}{2}$ positions and more are ineffective

Propositional SAT Encoding

Classification

Conclusion

Prefix Filtering

- **1.** Fix first three transitions to 1, 2, 3
 - 1,2 w.l.o.g.
 - next transition can only be 3, 4, ..., n
 - w.l.o.g. restrict to canonical one (i.e. dimension 3)
- no need to add blocking clauses for equivalent cycles not starting with 1, 2, 3 (*trivially satisfied*)

Example: 1,2,3,1,2,3 \sim 1, 3, 2, 1, 3, 2 blocking clause

$$\neg xor^{0,1}[1] \lor \neg xor^{1,2}[3] \lor \neg xor^{2,3}[2] \lor \neg xor^{3,4}[1] \lor \neg xor^{4,5}[3] \lor \neg xor^{5,0}[2]$$

is satisfied: $xor^{0,1}[1] \wedge xor^{1,2}[2] \wedge xor^{2,3}[3]$

percubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Longest lean induced cycles

n	L	U	Result	Time (sec)
3	6	0	SAT	<0.001
		1	UNSAT	<0.001
4	8	0	SAT	0.007
		1	SAT	0.009
		2	UNSAT	0.015
5	14	0	SAT	0.033
		1	UNSAT	3.012
6	26	0	SAT	0.420
		1	UNSAT	750.390
7	48	0	SAT	27568.000
		1	SAT	32175.000
		2	SAT	36936.000
		3	SAT	208304.000
		4	timeout	>60h

ation Hypercubes! Lean Indu

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Classification: L=24

h Hypercubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Classification: L=18

- New combinatorial problem with application in Systems Biology
- Solutions for dimensions up to 7
- Classification for dimensions up to 6

percubes!

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

Challenges

- Higher dimensions
- Efficient algorithms
- Real world examples
- Complexity of the problem
- $n \to \infty$

n	Hypercubes!	

Lean Induced Cycles

Propositional SAT Encoding

Classification

Conclusion

References

- Blass+01 Blass, U.; Honkala, I.; Karpovsky, M. G. and Litsyn, S. Short Dominating Paths and Cycles in the Binary Hypercube, Annals of Combinatorics (5), pp. 51-59, 2001
- Chebiryak+08 Chebiryak, Y. and Kroening, D. Towards a classification of Hamiltonian cycles in the 6-cube, Journal on Satisfiability, Boolean Modeling and Computation (4), pp. 57-74, 2008
- Chebiryak+08 Chebiryak, Y. and Kroening, D. An Efficient SAT Encoding of Circuit codes, IEEE International Symposium on Information Theory and its Applications, Auckland, New Zealand, December, 2008
 - Fisher+05 Fisher, J.; Piterman, N.; Hubbard, E.; Stern, M. and Harel, D. Computational insights into Caenorhabditis elegans vulval development, Procs National Acad Sciences (102), pp. 1951-1956, 2005
 - Glass'77 Glass, L. Combinatorial aspects of dynamics in biological systems, Statistical mechanics and statistical methods in theory and applications, Plenum, pp. 585-611, 1977
 - Harary+88 Harary, F.; Hayes, J. P. and Wu, H. A Survey of the Theory of Hypercube Graphs. Comput. Math. Appl. (15), pp. 277-289, 1988
 - de Jong+08 de Jong, H. and Page, M. Search for Steady States of Piecewise-Linear Differential Equation Models of Genetic Regulatory Networks, IEEE/ACM Trans. Comput. Biology Bioinform. (5), pp. 208-222, 2008
 - Knuth05 Knuth, D. E. The Art of Computer Programming, vol. 4, fascicle 2: Generating All Tuples and Permutations, Addison-Wesley Professional, 2005
 - Suparta'06 Suparta, I. N. Counting sequences, Gray codes and lexicodes, Delft University of Technology, 2006
 - Zinovik+07 Zinovik, I.; Kroening, D. and Chebiryak, Y. An Algebraic Algorithm for the Identification of Glass Networks with Periodic Orbits Along Cyclic Attractors, Procs. Algebraic Biology, pp. 140-154, 2007
 - Zinovik+08 Zinovik, I.; Kroening, D and Chebiryak, Y. Computing Binary Combinatorial Gray Codes via Exhaustive Search with SAT-solvers, IEEE Transactions on Information Theory, 2008, vol. 54, pp. 1819-1823