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Chinese Ring Puzzle

aka. The Devils Needle Puzzle aka. Cardan’s rings

Figure adopted from [Knuth’05]

Empty the bar by
1. removing or replacing rightmost ring or
2. moving any ring if right ring is on bar and rest are off
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Binary Reflected Gray Code
Gray codes applications:
• analog to digital information conversion
• error correction
• circuit testing
• signal encoding
• data compression
• diagnosis of multiprocessors
• computational biology (e.g. [Glass’77,Zinovik+07])

Figure adopted from [Knuth’05]
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Gene Regulatory Networks

Gene interaction using wiring diagrams:

atopted from [Fisher+05]
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Ordinary Differential Equations (ODE)

• We consider n genes, where each gene
has a product

• Let xi denote the concentration of the
product of gene i

• Dynamics:

ẋi = −gi(x1, . . . , xn)− γixi for 1 ≤ i ≤ n,

where
γi > 0: degradation rate of xi

gi : Rn
≥0 → R≥0: coupling
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Glass Model

Gene activity is on/off only
The general form of a Glass network is

ẋi = Gi(x̃1, . . . , x̃n)− αxi for 1 ≤ i ≤ n

where
• α > 0,
• Gi: interaction functions,

• x̃i =
{

a : if xi < θi

b : if xi > θi

• with real constants a < b

[Glass’77]
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From phase flow to hypercubes

Phase Flow
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Hypercube
Q1 = K2, Qn = K2 × Qn−1
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Hypercube
Q1 = K2, Qn = K2 × Qn−1
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Hypercube
Q1 = K2, Qn = K2 × Qn−1
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Hypercube
Q1 = K2, Qn = K2 × Qn−1
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Induced cycle aka Cyclic snake

Periodic trajectories of Glass networks ∼ cycles in hypercubes
A cyclic attractor = induced cycle, edges oriented toward
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Induced cycle: Example
Initial node: 000,
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Induced cycle: Example
Initial node: 000, Transition sequence: 1, 2
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Induced cycle: Example
Initial node: 000, Transition sequence: 1, 2, 3
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Induced cycle: Example
Initial node: 000, Transition sequence: 1, 2, 3, 1
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Induced cycle: Example
Initial node: 000, Transition sequence: 1, 2, 3, 1, 2, 3
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Hamming Distance, Paths on Hypercube

For two nodes Wk and Wl of n-cube Hamming distance

dH(Wk,Wl) =
∣∣{ i | Wk[i] 6= Wl[i]}

∣∣ ,
Path P = W0,W1, . . . ,WL−1 of length L,

∀j ∈ {0, 1, . . . ,L− 2}. dH(Wj,Wj+1) = 1 .

Cycle

∀j ∈ {0, 1, . . . ,L− 1}. dH(Wj,Wj+1 mod L) = 1 .
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Cyclic distance

Definition
The cyclic distance dC(Wj,Wk) of two nodes Wj and Wk of a
cycle of length L in an n-cube is

dC(Wj,Wk) = min
{
|k − j|, L− |j− k|

}
.

[Suparta06]
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Induced cycle: Definition

Definition
An induced cycle I0, I1, . . . , IL−1 in an n-cube is a cycle such
that any two nodes on the cycle are adjacent in the n-cube only
if they are neighbours on the cycle:

∀j, k ∈ {0, 1, . . . ,L− 1}.
dH(Ij, Ik) < 2 =⇒ dC(Ij, Ik) < 2
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Lean induced cycles: Example in 4D
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Lean induced cycles: shunned nodes

Definition
A node W is shunned if and only if it is not adjacent to any node
of a cycle:

∀i ∈ {0, . . . ,L− 1}. dH(W, Ii) > 1

Goal: maximize number of shunned nodes

Solution: use SAT solver
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Propositional SAT: Advantages

• definite answer
• provably correct (satisfying assignment or proof)
• easy to modify encoding
• easy to add new constraints
• can benefit from theoretical results
• enumeration/classification (ALL-SAT)
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Encoding induced cycles:

Input dimension n, length L

Coordinates (n · L) boolean variables Ij[k],
where 0 ≤ j < L and 0 ≤ k < n

Transition seq (n · L) XOR gates xork,k+1[l]

Cycle
∧L−1

j=0 dH(Ij, Ij+1 mod L) = 1

Chordless
∧L−3

j=0
∧L−1

k=j+2 dH(Ij, Ik) > 1

How to encode dH efficiently?
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Encoding induced cycles: Once-twice predicates

• onceA,B - at least one of xorA,B[i] is enabled
• twiceA,B - at least two ...
• dH(A,B) = 1 is encoded as

onceA,B ∧ ¬twiceA,B

• dH(A,B) > 1 as
onceA,B ∧ twiceA,B

• and dH(A,B) ≥ 1 as
onceA,B

variety of encodings: OR-tree, long clause, etc.
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Encoding induced cycles: Hamming distance

[Chebiryak&Kroening, JSAT’2008]
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Encoding shunned nodes

Lean induced cycle I0, . . . , IL−1 with at least S shunned nodes

Coordinates S Boolean vectors s0, . . . sS−1 of length n

Disjoint
∧

0≤ i<j≤ S−1 dH(si, sj) ≥ 1

Shunned
∧S−1

i=0
∧L−1

j=0 dH(si, Ij) > 1
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Equivalence relation

Two cycles equivalent = transition sequences identical by
• permutation of axes
• reflection
• rotation

Example: 1, 2, 3, 1, 2, 3, ∼ 1, 3, 2, 1, 3, 2

1, 2, 3, 1, 2, 3 ∼ 2, 3, 1, 2, 3, 1 (left rotation by 1)
∼ 1, 3, 2, 1, 3, 2 (reflection)

1, 2, 3, 1, 2, 3 ∼ 1, 3, 2, 1, 3, 2 π(1, 2, 3) = (1, 3, 2)

Classification: ALL-SAT with blocking clauses for every
equivalent cycle
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Equivalence classes computation using SAT

Use ALL-SAT to compute |IC(n,L, ≥U)|, then

|IC(n,L, k)| = |IC(n,L, ≥k)| − |IC(n,L, ≥k + 1)|
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Scalability issues

• Too many blocking clauses per class:

(2L · n!) = 25920 for n = 6,L = 18

• Multiplied by number of classes (1228)
= 30 millions blocking clauses.

• ALL-SAT is done when UNSAT is reached.

⇒ reduce number of blocking clauses per class
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Symmetric Gray codes

Symmetric transition sequence:

t1, t2, . . . , tm, t1, t2, . . . , tm

⇒ rotations by L
2 positions and more are ineffective
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Prefix Filtering

1. Fix first three transitions to 1, 2, 3
• 1, 2 - w.l.o.g.
• next transition can only be 3, 4, . . . , n
• w.l.o.g. restrict to canonical one (i.e. dimension 3)

2. no need to add blocking clauses for equivalent cycles not
starting with 1, 2, 3
(trivially satisfied)

Example: 1,2,3,1,2,3 ∼ 1, 3, 2, 1, 3, 2
blocking clause

¬xor0,1[1]∨¬xor1,2[3]∨¬xor2,3[2]∨¬xor3,4[1]∨¬xor4,5[3]∨¬xor5,0[2]

is satisfied: xor0,1[1] ∧ xor1,2[2] ∧ xor2,3[3]
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Longest lean induced cycles

n L U Result Time (sec)
3 6 0 SAT <0.001

1 UNSAT <0.001
4 8 0 SAT 0.007

1 SAT 0.009
2 UNSAT 0.015

5 14 0 SAT 0.033
1 UNSAT 3.012

6 26 0 SAT 0.420
1 UNSAT 750.390

7 48 0 SAT 27568.000
1 SAT 32175.000
2 SAT 36936.000
3 SAT 208304.000
4 timeout >60h
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Classification: L=24
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Classification: L=18
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Conclusion

• New combinatorial problem with application in Systems
Biology

• Solutions for dimensions up to 7
• Classification for dimensions up to 6
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Challenges

• Higher dimensions
• Efficient algorithms
• Real world examples
• Complexity of the problem
• n→∞
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