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Introduction

This master thesis is done in the context of the Verisoft project1. Verisoft aims at the perva-

sive formal verification of entire computer systems. In particular, the seamless verification of the

academic system is attempted. This system consists of hardware (processor and devices) on top

of which runs a microkernel, an operating system, and applications.

In this thesis we focus on the microkernel. The microkernel is divided into two compu-

tational models: CVM* (Communicating Virtual Machines) and VAMOS* (Verified Architecture

Microkernel Operating System).

The CVM* model represents the low-level functionalities of the microkernel: (i) process

switching, (ii) allocation and deallocation of memory, (iii) declaration of interrupt handlers, (iv)

I/O with devices, and (v) copying of data between user processes.

Based on CVM* we have the model VAMOS* providing: (i) scheduling mechanisms, (ii)

memory management, and (iii) inter-process communication (IPC).

The aim of this thesis is to formally specify the scheduling mechanisms and show the

functional correctness of the VAMOS scheduler.

Organization of the document

Chapter 1 presents notation that we use within this thesis. Chapter 2 outlines the mathe-

matical model VAMOS*. Chapter 3 describes the design of the scheduling mechanisms, i.e. the

VAMOS scheduler and how it operates within the VAMOS* model. In chapter 4 we come closer

to the real world. We present how VAMOS is modelled in theorem proving environment Isabelle,

and chapter 5 concentrates on the implementation of VAMOS using the programming language

C0. Chapter 6 introduces the verification environment that we use in Verisoft project. Chapter 7

presents specifications of the VAMOS functions relevant to the VAMOS scheduler.

1http://www.verisoft.de

http://www.verisoft.de


Chapter 1

A Word on Notation

First we introduce notation. Some of these definitions (together with notation) are adopted

from [9].

1.1 Basic Types

We use the following basic types:

Boolean numbers: B = { False, T rue }

Integer numbers: Z = { . . . , −2, −1, 0, 1, 2, . . . } ;

Natural numbers: N = { 0, 1, 2, . . . } ;

Process identifier (PID): We identify processes of the VAMOS microkernel using pro-

cess identifiers (PIDs). The number of processes is currently restricted to 128. We define

the set PID of process identifiers as follows:

PID MAX ∈ N, P ID MAX = 128;

PID = {0, . . . , P ID MAX − 1}.

Priority (PRIO): Each process of the VAMOS microkernel has a priority. Currently,

there are three different priorities. We define the set PRIO of priorities as follows:

MAX PRIO ∈ N, MAX PRIO = 3;

PRIO = {0, . . . , MAX PRIO − 1}.



1.2. LISTS CHAPTER 1. A WORD ON NOTATION

1.2 Lists

A list is a sequence of elements of a certain type. This type can be a basic or a compound

one. We denote a list of elements of type T by “list (T)”. An empty list is denoted by “[ ]”. For

further use we define:

List of one element

A list of one element x of type T is constructed using square brackets:

x : T

[x] : list (T).

List of more than one element

To denote a list of n elements we enclose them in square brackets and divide by comma:

a1, a2, a3, . . . , an : T

[a1, a2, a3, . . . , an] : list (T).

For example, list of integers, containing -5 followed by 2, followed by 1 is denoted as

follows:

[−5, 2, 1] : list (I).

Constructor (Cons)

A list is constructed from an element x and a list xs by the infix operator “#”:

x : T

xs : list (T)

x # xs : list (T).

For example,

a1 # [a2, a3, a4] = [a1, a2, a3, a4].

In order to describe the VAMOS we would need some functions on lists:

The head of a list

The function hd returns the first element of a list. It is undefined for an empty list:

hd : list (T) −→ T

hd (x # xs) ≡ x

8
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For example,

hd [a1, a2, a3, a4] = a1

The tail of a list

The function tl returns a list without its first element:

tl : list (T) −→ list (T)

tl [ ] ≡ [ ]

tl (x # xs) ≡ xs

For example,

tl[a1, a2, a3, a4] = [a2, a3, a4]

The length of a list

The function length returns the number of elements in a list:

length : list (T) −→ N

length [ ] ≡ 0

length (x # xs) ≡ 1 + length xs

For example,

length[a1, a2, a3, a4] = 4

Appending two lists

The infix operator “@” appends two lists:

@ : list (T) × list (T) −→ list (T)

[ ] @ ys ≡ ys

(x # xs) @ ys ≡ x # (xs @ ys)

For example,

[a1, a2] @ [a3, a4] = [a1, a2, a3, a4]

Accessing an element by index

A list can be seen as an array. To access the i-th element of a list (xs) we use the infix

9



1.2. LISTS CHAPTER 1. A WORD ON NOTATION

operator “!”. The operation is undefined for an empty list and for indices greater than

length of a list:

! : list (T) × N −→ T

(xs) ! i ≡

 hd (xs) if (i = 0)(
tl (xs)

)
! (i− 1) otherwise

Presence of an element in a list

We use the infix operator “∈” to check whether an element is in a list:

∈ : T × list (T) −→ B

y ∈ [ ] ≡ False

y ∈ (x # xs) ≡

 True if (x = y)

y ∈ xs otherwise

Deleting an element from a list

We delete an element with the function Delete. We assume only one occurrence of the

provided element.

Delete : list (T) × T −→ list (T)

[ ] Delete y ≡ [ ]

(x # xs) Delete y ≡

 xs if (x = y)

x # (xs Delete y) otherwise

We introduce an extended version of this function. The function takes two lists and

deletes all elements of the second list from the first one. It is defined as the infix opera-

tor “\”:

\ : list (T) × list (T) −→ list (T)

xs \ [ ] ≡ xs

xs \ (y # ys) ≡ (xs Delete y) \ ys

Total order in lists

We usually use lists with distinct components. Thus, we can define total order on ele-

ments with respect to this list. Obviously, one element precedes another one if its index

10
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is smaller:

A : T, B : T, a : N, b : N, lst : list (T);

Let

A ∈ lst, lst ! a = A, B ∈ lst, lst ! b = B,

the total order is defined as follows:

A <lst B ⇐⇒ a < b.

1.3 Records

A record is a special data type. It is a compound object, containing named components of

arbitrary types. These components are called fields.

For instance, the record R with the integer field A and the boolean field B is defined by the

following notation:

R : (A : Z, B : B)

For further use we define:

Accessing a field of a record

In order to access a certain field of a record we use the “.” (dot) operator. The field A of

the record R presented above is accessed as follows:

(A = −5, B = True).A = −5

Records equality

Two records are equal if and only if all corresponding fields are equal:

R = R′ ⇐⇒ ∀ r. (R.r = R′.r)

11



Chapter 2

The VAMOS* Model

This chapter presents the VAMOS* model. The description relies on the terminology intro-

duced in [2].

The VAMOS* model is based on the CVM* model. The CVM* model represents the low-

level functionalities of the microkernel: (i) process switching, (ii) allocation and deallocation of

memory, (iii) declaration of interrupt handlers, (iv) I/O with devices, and (v) copying of data

between user processes.

The model VAMOS* provides: (i) scheduling mechanisms, (ii) memory management, and

(iii) inter-process communication (IPC).

We define the VAMOS* model as follows:

V AMOS∗ = (vamos conf t, vamos input t, vamos start t, δV AMOS)

• VAMOS* configuration vamos conf t : this record defines all configurations of our

model;

• Input signals vamos input t: the VAMOS* model has a set of input signals. These are

interrupt events and input from devices;

• initial configuration vamos start t: this set defines all valid initial configurations of

the VAMOS* model;

• transition relation δV AMOS : defines all possible transitions from a certain VAMOS*

configuration.

In the following, we do not consider the whole model, but only the parts affected by the

scheduler. Therefore the focus in the forthcoming section is on the VAMOS* configuration.



CHAPTER 2. THE VAMOS* MODEL 2.1. THE VAMOS* CONFIGURATION

2.1 The VAMOS* Configuration

The VAMOS* configuration comprises the kernel data structures kds, the global variables

gv, a list of all processes process list, some parts of the CVM configuration cvm c, a list of external

handlers external handlers list and a list of devices devices list:

vamos conf t = (process list : list (process data t), kds : kds t,

gv : gv t, cvm c : cvm c t,

external handlers list : list (PID), devices list : list (PID) )

2.1.1 Processes: process list

The process list of the VAMOS* configuration contains all processes. Its length is equal to

the global constant PID MAX.

process data t = (timeslice : N, consumed timeslice : N, first invalid page : N,

pid : PID, timeout : Z, priority : PRIO,

privileges : B, state : N, ipc length : N,

ipc length2 : N, ipc message : N, ipc message2 : N,

ipc partner : PID, ipc partner2 : PID, ipc timeout : Z,

ipc timeout2 : Z, ipc send list : list (PID) )

• timeslice — The computing time of a process until it is being rescheduled (in clock

ticks);

• consumed timeslice — The number of CPU clock ticks already used by a process;

• first invalid page — The index of the first page in memory not owned by a process;

• pid — The process identifier;

• timeout — The point in time, until an IPC operation has to happen (in clock ticks);

13



2.1. THE VAMOS* CONFIGURATION CHAPTER 2. THE VAMOS* MODEL

• priority — The priority of a process;

• privileges — The boolean variable that indicates whether a process has privileges (i.e. it

is a privileged process);

• state — The current status of a process. It is either inactive, ready or sleeping;

• ipc length — The length of an IPC message;

• ipc length2 — The same for the receive phase of the ipcSendReceive operation;

• ipc message — The starting address of an IPC message;

• ipc message2 — The same for the receive phase of the ipcSendReceive operation;

• ipc partner — The process identifier of the process to communicate with;

• ipc partner2 — The process identifier of the process to receive information from (only

for the receive phase of the ipcSendReceive operation);

• ipc send list — A list of processes waiting for the IPC communication with this partic-

ular process.

2.1.2 Kernel Data Structures kds

kds t =
(
ready lists array : list

(
list(PID)

)
,

sleeping list : list(PID),

inactive list : list(PID)
)

• ready lists array contains processes ready to execute, sorted by their priorities. The

dimension of this array (i.e. the number of the ready lists) is defined by the global

constant MAX PRIO. Ready processes are contained in the ready list indexed by their

priorities. If there are no processes of a certain priority, the corresponding ready list is

empty;

• sleeping list contains processes waiting for an IPC (sleeping processes);

• inactive list contains unused PIDs.

14



CHAPTER 2. THE VAMOS* MODEL 2.1. THE VAMOS* CONFIGURATION

2.1.3 Global Variables gv

gv t = (cup : PID, current max prio : PRIO,

time : N, next timeout : Z,

privileged exists : B, vamos pages used : N )

• cup — The process identifier of the currently running process;

• current max prio denotes the maximum priority over all ready processes;

• time stores the global time (in clock ticks);

• next timeout stores the closest IPC timeout (the minimum timeout over all processes

in the Sleeping List);

• privileged exists indicates whether privileged process(-es) already exists;

• vamos pages used stores the number of memory pages used by the VAMOS microker-

nel.

2.1.4 Connection with the CVM Layer cvm c

The configuration of the VAMOS* model partially contains the CVM configuration cvm c.It

serves to bind the VAMOS layer with the underlying CVM layer. These layers are clearly sepa-

rated, and the CVM layer is not of interest in the context of this thesis (because the VAMOS

scheduler operates only on the VAMOS layer). In order to get the whole picture of the operating

system developed in Verisoft refer to [2].

2.1.5 External Interrupt Handlers external handlers list

A process can be assigned to handle a certain external interrupt. The list

external handlers list indicates processes associated with interrupts. The index in this list corre-

sponds to the interrupt number. These mechanisms are not implemented yet.

2.1.6 Device Drivers devices list

Processes can be assigned with devices and serve as device drivers. These mechanisms are

not implemented yet.

15



2.2. VAMOS SYSTEM CALLS CHAPTER 2. THE VAMOS* MODEL

2.2 VAMOS System Calls

VAMOS provides several system calls to the user. These system calls change the VAMOS*

configuration depending on their input parameters. All VAMOS system calls are presented in

Table 2.1. Thorough information about the VAMOS system calls can be found in [3].

System Call Description

Task Management

processCreate creates a new process

processClone clones a given process

processKill kills a given process

processGetPrivileges is used to obtain privileges for the currently running process

processGetMyPid returns PID of the currently running process

processSwitchTo current process gives out CPU control voluntarily

processChangeSchedulingParam changes timeslice and priority values for a given process

Memory Management

memoryAdd extends the virtual memory of a process

memoryFree shortens the virtual memory of a process

I/O-Devices

ioIn writes data to device ports

ioOut reads data from device ports

Interprocess Communication

ipcSend sends an IPC-message to a given process

ipcSendReceive sends an IPC-message and waits for reply

ipcReceive receives an IPC-message from a given process

Table 2.1: VAMOS System Calls, adopted from [2].
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Chapter 3

VAMOS Scheduler

VAMOS provides functionalities to serve as base for a multi-tasking operating system. The

VAMOS processes are running concurrently and contending for the CPU control. Obviously, only

one of them advances at time. Therefore we have to choose a process to execute. This is usually

done by the scheduler, which is part of the operating system kernel.

In the following we describe the functionality of the VAMOS scheduler.

3.1 Design of the VAMOS Scheduler

It was conceived that processes of VAMOS can be distinguished in quality of service. For

that purpose we have a priority associated with every process. A higher priority guarantees

better service. Processes ready for execution are sorted in the Ready Lists Array by their priorities.

Processes with the highest priority are executed in round robin fashion. If the ready list of the

highest priority is empty, the scheduler executes processes from the ready list of the priority less

by 1, and so on. Therefore a process with some priority is not scheduled while there exists a

process with the higher priority. This defines the default scheduling policy. Nevertheless, it can

be changed using the VAMOS system calls processSwitchTo and processChangeSchedulingParam.

The VAMOS scheduler is preemptive, i.e. a process can be suspended at an arbitrary in-

stant [15]. Every process has a timeslice associated with it. The timeslice is the amount of the

CPU time provided to a process for execution. In the VAMOS microkernel time is measured in

clock ticks. After the current process has used its whole timeslice, the scheduler selects the next

process to execute.
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The current process can be preempted even before its timeslice has expired (e.g. if a process

with the higher priority awakes).

An overview of the VAMOS scheduler design is presented in Figure 3.1.

As it was mentioned above, the Ready Lists Array stores processes that are ready for exe-

cution. Processes waiting for an IPC are enqueued in the Sleeping List. If a process is killed, it is

enqueued to the Inactive List. All these lists are part of the kernel data structures kds. The global

variables gv also contain some information relevant for the scheduling decisions: cup stores the

PID of the currently running process, current max prio stores the maximum priority over all ready

processes, and next timeout stores the minimum IPC timeout over all sleeping processes.

Together with ordinary processes there is a special one, called the idle process. It is intro-

duced to avoid the situation that all the ready lists are empty. The idle process runs in an endless

loop. It does no meaningful work and it has the following properties: the minimum timeslice (1

CPU clock tick), the minimum priority (0), and its state is ready. Even privileged processes cannot

affect these properties.

Thus, we can state that if the idle process is scheduled, there are no processes in the ready

lists with higher priorities:

∀c : vamos conf t.(
c.gv.cup = idle =⇒

(
∀i : N. (i > 0 ∧ i < MAX PRIO =⇒ ready lists array ! i = [ ])

))
.

Note, that this statement does not hold the other way round — the fact that all the ready

lists with higher priorities are empty does not imply that the idle process runs, but any with prior-

ity 0. That is why the timeslice of the idle process is set to the minimum value — in order to lessen

the CPU time wasted for the idle process while there are other processes requiring execution.

The order of process execution is determined by the clock interrupt handler and two VA-

MOS system calls. In the following we give a detailed description.

3.2 Clock Interrupt Handler

The core of the VAMOS scheduler is the clock interrupt handler. It is invoked on every

clock tick. The clock interrupt handler is in charge of the scheduling decision. In other words, it

chooses the process that is executed in the next clock tick.

In general, three main steps should be done to handle a clock interrupt:

1) increment the time value;

18
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Figure 3.1: Scheduler design.

2) check whether the timeslice of the current process is expired;

3) check for elapsed IPC timeouts.

On every step we refer to the VAMOS* configuration before the invocation of the clock

interrupt handler as c. By updating c we get the VAMOS* configuraiton c’:

c, c′ : vamos conf t

We emphasize only on updates of the configurations. In other words, we only show the

changes, made on c to come to c’.

In the following we present changes done in these steps. Every step is explained in a

separated subsection.

3.2.1 Incrementing the Time

The global time counter is incremented by 1:

c′.gv.time ≡ c.gv.time + 1

19
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3.2.2 Checking the Timeslice of the Current Process

Since the current process used another clock tick we have to check whether the assigned

timeslice is spent. Therefore we introduce the predicate timeslice complete?:

timeslice complete? : vamos conf t −→ B;

timeslice complete?(c) ≡(
((c.process list ! c.gv.cup).consumed timeslice + 1) < (c.process list ! c.gv.cup).timeslice

)
.

Depending on this predicate, we consider two cases.

Case 1

If the predicate timeslice complete? does not hold for the configuration c, we simply incre-

ment the consumed timeslice of the current process:

(c′.process list ! c.gv.cup).consumed timeslice ≡

(c.process list ! c.gv.cup).consumed timeslice + 1.

Case 2

If the predicate timeslice complete? holds, we have to suspend the current process.

This means: we set its consumed timeslice to zero, put it to the end of its ready list, and

change the current process. The first two updates are basic and for the latter we have to consider

the position of the current process in its ready list. In general, there are only three possible

cases:

• The currently running process is the only element of the ready list indexed by the cur-

rent max prio.

In this case the next process to schedule is again the current process. Thus, no update

of the configuration is needed;

• The currently running process is the head of the ready list indexed by the cur-

rent max prio and this list contains more than one element1.

1In fact, this case cannot happen with Simple Operating System (SOS) running on top of the VAMOS. Nevertheless,

we consider it here to have all the possible cases covered.
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In this case we have to schedule the second process in the ready list:

Let

cup is head? : vamos conf t −→ B;

cup is head?(c) ≡
((

hd (c.kds.ready lists array ! c.gv.current max prio) = c.gv.cup
)

∧
(
length(c.kds.ready lists array ! c.gv.current max prio) > 1

))
in

c′.gv.cup ≡ (c.kds.ready lists array ! c.gv.current max prio) ! 1 if cup is head?(c)

• The currently running process is not the head of the ready list indexed by the cur-

rent max prio or even not in this ready list. Such situation can happen if the configu-

ration is affected by the processSwitchTo system call.

In this case we have to schedule the head of the ready list indexed by the cur-

rent max prio:

Let

cup not head? : vamos conf t −→ B;

cup not head?(c) ≡
((

hd (c.kds.ready lists array ! c.gv.current max prio) 6= c.gv.cup
)

∨
(
c.gv.cup /∈ (c.kds.ready lists array ! c.gv.current max prio)

))
in

c′.gv.cup ≡ hd (c.kds.ready lists array ! c.gv.current max prio) if cup not head?(c)

3.2.3 Checking for Elapsed IPC Timeouts

The variable next timeout stores the closest IPC timeout over all processes in the Sleeping

List. As the global time reaches the next timeout we are sure that at least one timeout of sleeping

processes expires. The predicate timeout elapsed? checks whether a timeout expires:

timeout elapsed? : vamos conf t −→ B

timeout elapsed?(c) ≡ (c.gv.next timeout = c.gv.time).

If the predicate holds, we perform the following:

• all the sleeping processes with the elapsed IPC timeouts are woken up;

• the variable next timeout should be recomputed;

• if a process with the priority higher than the current max prio awakes, we have to up-

date the variable current max prio and change the current process.
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We explain how these actions are done step by step.

Waking up Processes

First, we enclose the sleeping processes with the elapsed IPC timeouts into the Elapsed List:

filter not elapsed : vamos conf t× list (PID) −→ list (PID)

filter not elapsed(c, [ ]) ≡ [ ];

filter not elapsed(c, x # xs) ≡

 x # xs if
(
(c.process list ! x).timeout = c.gv.time

)
filter not elapsed(c, xs) otherwise

;

elapsed list(c) ≡ filter not elapsed(c, c.sleeping list).

Then it is clear that the Sleeping List in the subsequent VAMOS* configuration is defined as

follows:

rest sleeping : vamos conf t −→ list (PID)

rest sleeping(c) ≡ c.sleeping list \ elapsed list(c);

c′.kds.sleeping list ≡ rest sleeping(c).

Processes from the Elapsed List should be enqueued to the corresponding ready lists. First,

we define the function filter prio that filters out processes with priorities differing from the given

one:

filter prio : list (PID)× PRIO −→ list (PID)

filter prio([ ], prio) ≡ [ ];

filter prio(x # xs, prio) ≡

 x # filter prio(xs, prio) if
(
(c.process list ! x).priority = prio

)
filter prio(xs, prio) otherwise

We define the updated Ready Lists Array as follows:

∀priority : PRIO.(
c′.kds.ready lists array ! priority ≡

(
c.kds.ready lists array @ filter prio(elapsed list(c), priority)

))
.
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We have to update the state of the awaking processes too:

∀prcs : PID.
(
prcs ∈ elapsed list(c) =⇒

(
(c′.process list ! prcs).state ≡ ready

))
.

Updating the Variable next timeout

Since the processes with the elapsed IPC timeouts are deleted from the Sleeping List, we

have to update the next timeout value2:

MinTimeout : vamos conf t −→ Z

MinTimeout(c) ≡ Min
{
x : Z

∣∣ x = (c.process list ! prcs).timeout, prcs ∈ rest sleeping(c)
}
;

c′.next timeout ≡ MinTimeout(c).

Updating the Variable current max prio

If at least one of the woken processes has a priority higher than the variable cur-

rent max prio, we have to update its value. Also we have to change the current process, regardless

the fact that we might have changed it in the previous step3.

First, we compute the highest priority over all awaking processes:

Max Prio : vamos conf t −→ PRIO

MaxPrio(c) ≡ Max
{
x : PRIO

∣∣ x = (c.process list ! prcs).priority, prcs ∈ elapsed list(c)
}
.

If MaxPrio(c) is greater than the c.gv.current max prio we perform necessary updates:

c′.gv.current max prio ≡ MaxPrio(c)

and

c′.gv.cup ≡ hd
(
filter prio(elapsed list(c), MaxPrio(c))

)
.

2The function Min computes the minimum over a set.
3That is because the processes with high priority should be executed as they appear (or wake up).
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3.3 Switching To Another Process

Processes with priorities lower than the current max prio have no opportunity to be ex-

ecuted under the default scheduling policy. They can only be executed if the current process

voluntarily relinquish CPU. This mechanism is provided via the VAMOS system call processS-

witchTo.

This system call is very useful when building a user-level scheduler on top of the VAMOS

scheduler. Just imagine a privileged process with maximum priority that gives the CPU control

to lower-priority processes. If these lower-priority processes have no privileges, they cannot in-

fluence scheduling decisions. Therefore using this scheduling mechanism a user-level scheduler

can implement arbitrary scheduling policies.

The process invoking this call voluntarily donates the rest of its timeslice and the CPU

control to a target process. The system call gets as a parameter the PID of the target process.

Therefore signature of the transition function for this system call is defined as follows:

δswitchTo : vamos conf t× PID −→ vamos conf t.

There are certain restrictions for this system call:

• the invoker is a privileged process;

• the target process has the ready status;

• the target process is not the idle process.

We define the predicate success switch? comprising these restrictions when trying to switch

to the process prcs:

success switch? : vamos conf t× PID −→ N

success switch?(c, prcs) ≡(
(c.process list ! c.gv.cup).privileged

)
∧

(
(c.process list ! prcs).status = ready

)
∧

(
prcs 6= idle

)
.

In the following we present the changes made by this system call in order to switch to the

given process prcs. We assume that there are no errors, i.e. the predicate success switch? holds.

In general, we have to perform three steps in order to switch to the given process:

1) update the consumed timeslice of the target process (subtract donated timeslice);

2) move the invoker to the end of its ready list and set its consumed timeslice to zero;

3) change the current process to the target process.
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All these steps are performed by the δswitchTo transition function. We refer to the VAMOS*

configuration before the invocation of this system call as c. If switching to the process prcs, the

system call updates it to the VAMOS* configuration c’:

c, c′ : vamos conf t;

c′ = δswitchTo(c, prcs).

In the following we present changes done in order to obtain c’.

3.3.1 Updating the consumed timeslice

The system call decreases the consumed timeslice of the target process by the rest of the

timeslice of the current process. In other words, we extend the potential amount of the running

time for the target process, and this extension is bounded by the amount of the rest timeslice the

current process has. When donating the rest of the timeslice we have to beware of underflow in

natural numbers.

The predicate underflow? checks for underflow in the consumed timeslice of the target

process:

Let

rest tsl =
(
(c.process list ! c.gv.cup).timeslice− (c.process list ! c.gv.cup).consumed timeslice

)
in

underflow? : vamos conf t× PID −→ B

underflow?(c, prcs) ≡ (c.process list ! prcs).consumed timeslice < rest tsl.

If the predicate holds, we set the consumed timeslice to zero, otherwise we perform the

subtraction:

Let

prcs ctsl = (c.process list ! prcs).consumed timeslice

in

(c′.process list ! prcs).consumed timeslice ≡


0 if underflow?(c, prcs)(
prcs ctsl − rest tsl

)
otherwise
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3.3.2 Moving the invoker to the end of its ready list

Since the currently running process has completely used its dedicated timeslice, it is sus-

pended: its consumed timeslice is set to zero, and the process is placed at the end of its ready

list.

Let

cup prio = (c.process list ! c.gv.cup).priority;

in

c′.kds.ready list array ! cup prio ≡(
(c.kds.ready lists array ! cup prio) Delete (c.gv.cup)

)
@ [c.gv.cup],

and

(c′.process list ! c.gv.cup).consumed timeslice ≡ 0.

3.3.3 Changing the current process

Since the target process is the next computing process, we have to update the configuration

accordingly:

c′.gv.cup ≡ prcs.

3.3.4 Remarks

If the target process is already the currently running process, none of these actions are

performed.

Figure 3.2 presents a pictorial example of how switching to the process is done.

3.4 Changing Scheduling Parameters

Priority and timeslice of the VAMOS processes are assigned during the process creation

(using the processCreate system call). These scheduling parameters can be changed even after

process creation using the VAMOS system call processChangeSchedulingParam. This system call is
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Figure 3.2: System call processSwitchTo example.
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very useful when creating a user-level scheduler on top of the VAMOS scheduler. It is available

for privileged processes only.

The process invoking this system call attempts to change the priority and the timeslice of

some process. New values for priority and timeslice are provided as input parameters together

with the PID of the target process. Therefore signature of the transition function for this system

call is defined as follows:

δc s p : vamos conf t× PID× PRIO× N −→ vamos conf t.

There are certain restrictions for this system call:

• the invoker is a privileged process;

• the target process has the active status (i.e. either ready or sleeping);

• the target process is not the idle process.

We define the predicate success change? comprising these restrictions when trying to

change the scheduling parameters of the process prcs:

success change? : vamos conf t× PID −→ N

success change?(c, prcs) ≡(
(c.process list ! c.gv.cup).privileged

)
∧

(
(c.process list ! prcs).state 6= inactive

)
∧

(
prcs 6= idle

)
.

In the following we present the changes made by this system call in order to change prior-

ity and timeslice of the given process prcs. We assume that there are no errors, i.e. the predicate

success change? holds.

In order to switch to the given process we have to perform the following three steps:

1) update timeslice and priority of the target process to the provided values;

2) move the target process into the appropriate ready list;

3) if necessary, change the current process to the target process and update the cur-

rent max prio.

All these steps are performed by the δc s p transition function. We refer to the VAMOS*

configuration before the invocation of this system call as c. If switching to the process prcs, the

system call updates it to the VAMOS* configuration c’:

c, c′ : vamos conf t;

c′ = δc s p(c, prcs, new prio, new tsl).
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In the following we present changes done in order to obtain c’.

3.4.1 Updating the scheduling parameters

The timeslice and priority fields of the process data t record of the target process are up-

dated according to the input variables:

(c′.process list ! prcs).priority ≡ new prio,

and

(c′.process list ! prcs).timeslice ≡ new tsl.

3.4.2 Updating the Ready Lists Array

If the target process is ready for execution and its priority is to be changed, we have to

enqueue the process into the appropriate ready list. To decide this we introduce the predicate

prio change?:

Let

prcs prio = (c.process list ! prcs).priority,

in

prio change? : vamos conf t −→ B;

prio change?(c) ≡
(
(c.process list ! prcs).state = ready

)
∧ (new prio 6= prcs prio).

If the predicate prio change? holds, we remove the target process from its ready list and

append it to the ready list, corresponding to the new value of the priority:

c′.kds.ready lists array ! prcs prio ≡
(
(c.kds.ready lists array ! prcs prio) Delete prcs

)
,

and

c′.kds.ready lists array ! new prio ≡
(
(c.kds.ready lists array ! new prio) @ [prcs]

)
.
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3.4.3 Changing the current max prio and the current process

If the newly assigned priority of the target process is higher than the current max prio value,

we have to update the current max prio and switch to that process. In order to check this we

introduce the predicate prio greater?:

prio greater? : vamos conf t −→ B

prio greater?(c) ≡
(
(c.process list ! prcs).state = ready

)
∧ (new prio > c.gv.current max prio).

If the predicate holds, we assign the variable current max prio to the provided priority and

switch the current process:

c′.gv.current max prio = new prio,

and

c′.gv.cup = prcs.

3.5 Summary

In this chapter we have outlined the scheduling mechanisms implemented in the VAMOS

scheduler and the provided functionality to change the default scheduling policy.

30



Chapter 4

The VAMOS Model in Isabelle

Having handwritten specification of a computer system is nice, but of no practical use. In

the Verisoft project we use the interactive theorem prover Isabelle for verification. Therefore we

have to adapt the VAMOS* model to the Isabelle system. This chapter describes how VAMOS* is

represented in Isabelle.

4.1 Basic Datatypes

We utilize Isabelle with Higher-Order Logic. It provides the following basic types:

• natural numbers — recursive type generated by the constructors zero and successor. It

works well with inductive proofs and recursive function definitions;

• integer numbers — lacks induction, but supports true subtraction;

• lists — recursive type generated by two constructors (the empty list and the operator

that adds an element to the front of a list;

• records — compound type, containing named components of arbitrary types;

• sets — of any type with usual operations (intersection, union, etc.).

Isabelle’s types system does not support subsets like PID or PRIO directly. These are mod-

elled as natural numbers N and we introduce predicates to check the boundaries.
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4.2 The VAMOS Configuration

With these basic types the VAMOS* configuration can be mapped to a record in Isabelle.

We define the record v conf t and refer to it as VAMOS Configuration (it is depicted on Fig-

ure 4.1). In this section we explain its structural differences from the VAMOS* configuration.

The VAMOS Configuration consists of two fields: the record c conf of the type c conf t

and the record v data of the type v data t .

4.2.1 The Record c conf t

This record type serves for a connection with the CVM layer. It is not presented here in

details, because the VAMOS scheduler does not affect this layer.

4.2.2 The Record v data t

This record type stands for the VAMOS Data. It contains kernel information (kernel data

structures and global variables) and information about processes. It contains two fields: the

record gd of the type gd t , and the function P that realizes the process list within the VAMOS*

model.

The record gd t

This record type contains kernel data structures and global variables. There are only two

differences in names: Sleeping List is called wkp and the Ready Lists Array is named rdy .

The function P

The function P realizes processes list from the VAMOS* model. It maps process identifiers

to the records of the type PrcsData t .

The record PrcsData t

This record type contains information about a process. Its fields directly correspond to the

content of the t process data, but some names are abbreviated:

• timeslice is abbreviated as tsl ,

• consumed timeslice as ctsl ,
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• priority as pri ,

• first invalid page as fip ,

• privileges as prv ,

• ipc send list as ipc sq .

4.3 VAMOS Transition Functions

In the previous chapter we have presented some transition functions (e.g. δswitchTo) ap-

plied to the VAMOS* configuration. We represent them in Isabelle as non-recursive functions,

which merely perform record updates to the VAMOS Configuration. In general, their signature

looks as follows:

funcabstr : [v conf t, input] −→ v conf t.

Here the function funcabstr is presented in curried notation. So, usually functions take a

VAMOS Configuration, some input parameters and return a modified configuration. Adaptation

to Isabelle notation is merely bookkeeping.

As an example we present function abstr switch to that corresponds to the function

δswitchTo from the previous chapter. We have omitted some syntactical details (like access to

fields of records, etc) to stress only on a whole picture and give an impression how is it done in

Isabelle (see Figure 4.2).
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Figure 4.1: The VAMOS Configuration.
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constdefs abstr switch to :: ”[v conf t, nat] −→ v conf t”

”

abstr switch to v p ==

let

current = v.cup;

current PrcsData = v.P (current);

p PrcsData = v.P (p);

cup tsl = current PrcsData.tsl;

cup ctsl = current PrcsData.ctsl;

p ctsl = p PrcsData.ctsl;

cup is prv = current PrcsData.prv;

p is ready = (p PrcsData.state = ready);

p is invalid = (PID MAX ≤ p ∨ p = 0);

cup pri = current PrcsData.pri

in

if (current = p)

then v

else if ((¬p is invalid) ∧ cup is prv ∧ p is ready)

then if (p ctsl < (cup tsl − cup ctsl))

then v.rdy ! cup pri := (filter (λy. y 6= current) (v.rdy ! cup pri)) @ [current],

v.cup := p,

v.P (current).ctsl := 0,

v.P (p).ctsl := 0,

else v.rdy ! cup pri := (filter (λy. y 6= current) (v.rdy ! cup pri)) @ [current]

v.cup := p,

v.P (current).ctsl := 0,

v.P (p).ctsl := (p ctsl − (cup tsl − cup ctsl))

else v

”

Figure 4.2: System call processSwitchTo modelled in Isabelle.

35



Chapter 5

Implementation

The VAMOS microkernel is located between the Communicating Virtual Machines layer

(CVM) and the Simple Operating System layer (SOS). VAMOS uses functionality provided by

the CVM layer via so-called CVM-primitives. Functionality provided by the VAMOS microkernel

is available for the SOS layer via VAMOS system calls.

The VAMOS microkernel implementation delivers a dispatcher invoking interrupt han-

dlers or functions realizing the services provided to the users. The decision is event-dependent.

The VAMOS operating system is implemented in the C0 programming language [5]. In

this chapter we outline the important nuances of the implementation.

5.1 The Programming Language C0

The VAMOS operating system is implemented in C0, which is a subset of the C program-

ming language. C0 differs from standard C, but the grammar is defined unambiguously. The

formal C0 semantics is much shorter than the one for C. This makes program verification sim-

pler. Moreover, programs written in C can be translated to C0.

The C0 programming language has the following restrictions [5]:

• no side-effects inside expressions (e.g. function calls, increments like i++ , etc.);

• the size of arrays is fixed at the compile time;

• in every function is only one return statement, which must be the last statement of

the function body;

• no pointer arithmetic;
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• no pointers to local variables;

• no function pointers;

• only typed pointers are allowed (thus, no void pointers);

• no variable declarations in functions after the first statement;

• no initialization during declaration (except declarations of constants);

• only one variable scope inside a function (i.e. no declarations inside nested {... }

blocks).

The C0 programming language has following built-in types [12]:

• 32-bit signed integers: int = {−231, . . . , 231 − 1} ;

• 32-bit unsigned integers: unsigned int = {0, . . . , 232 − 1} ;

• Boolean: bool = {true , false } ;

• 8-bit signed integers: char = {−128, . . . , 127} .

Based on these simple types one can construct compound types[12]:

• Typed pointers: typ * x ;

• Arrays: typ a[size] ;

• Structures: struct styp { typ data };

Here typ stands for the basic or compound type, styp — for the newly declared structural

type, and size — for an integer constant denoting size of an array.

5.2 Data Structures

The implementation of the VAMOS data structures is depicted in Figure 5.1. In this section

we explain how it corresponds to the VAMOS Configuration (see Figure 4.1).

Using the type system of C0 we can implement natural numbers N as unsigned int’s, inte-

ger numbers Z as int’s, and boolean B as bool’s. Records are implemented as C0-structures.

For what concerns lists, we use the dList package developed in the frame of the Verisoft

project. With this package we only declare doubly linked list. Then C0-macros declares and de-

fines functions working with these lists. At the time of writing the package includes the following

functions [10]:
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Figure 5.1: Implementation of the VAMOS data structures in C0.
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• dList New() — empty list constructor;

• dList InsertHead() — list constructor (appends provided element to the head of a

list);

• dList InsertAfter() — inserts provided element at certain position is a list;

• dList GetElement() — fetches an element from a list (invoker provides the index

of the element as an input parameter);

• dList Append() — appends two provided lists;

• dList Delete() — deletes an element from a list;

• dList Length() — returns the length of a list.

Elements of dLists are C0-structures. In order to declare a list (and then use functions from

the dList package) one have to provide the following:

• Declare some structural type STyp;

• Within this structural type fields containing valuable information have to be declared.

For example, if one declares a list of integers:

struct STyp { int i } ;

• Supplement this structural type with pointers prev and next . Their type is “STyp * ”

and they point to neighbors of the element in the list.

For the previous example:

struct STyp {

int i;

STyp * prev;

STyp * next };

• Declare a pointer that will store the head of a list. The type of this pointer is “STyp * ”.

Thus, on the abstract layer we argue only about elements in a list, but on the implementa-

tion side we perform operations with pointers on the heap. The dList package not only contains

macros to define and declare functions from above, but also their specifications in Isabelle. At

the time of writing both partial and total correctness are shown [8].
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5.2.1 Process Information Block

Information about the particular processes is contained in the Process Information Block

(PIB) structure pib t . Its members directly correspond to fields of PrcsData t record (see Fig-

ure 5.2).

Additionally, PIB contains pointers queue next and queue prev to the structure of same

type pib t . These pointers are used by functions working on dLists (see above).

Pointer send queue stores to the head of the list of processes waiting for IPC communica-

tion with this process, the so-called Send Queue (in the VAMOS Configuration it is ipc sq). Pointers

send queue next and send queue prev are used to build this dList.

5.2.2 Global Variables

The global variables of VAMOS implement the VAMOS Data record (see Figure 5.3) with

some nuances:

• Instead of the function P we have an array of the PIBs;

• The reference current process points to the PIB of the currently running process;

• The list of external handlers is implemented as an array;

• We store the heads of dLists in pointers inactive and wakeup list for the Inactive

and the Sleeping List respectively. The array ready lists stores the heads of the ready

lists implementing the Ready Lists Array. Its dimension is determined by the global

constant MAX PRIO.

5.3 VAMOS System Calls

VAMOS System Calls are implemented by functions with almost the same names (compare

Figure 5.4 with Table 2.1).

The implementation is modularized very well:

• frequent operations are carried out into helper functions (like compute max prio ,

wake up , etc.);

• for operations on doubly linked lists functions from the dList package are invoked;

• some VAMOS system calls use CVM-primitives to change the state of the Virtual Ma-

chine.
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Figure 5.2: Process information block structure implementing the record PrcsData t.
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Figure 5.3: Global variables implementing the record gd t.
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All these functions are depicted in Figure 5.4.

The functions InsertTail and Rotate are not part of the dList package. They are speci-

fied and verified in the context of this thesis.

Our goal is to specify and verify the VAMOS functions relevant to the VAMOS scheduler.

Since it is unfeasible to verify the function before specifying and verifying functions it

calls, we have to consider their static call graph (see Figure 5.5). For example, the function

process change sched param implementing the system call processChangeSchedulingParam

invokes: the function Delete , which is specified and verified in dList package; functions

InsertTail and compute max prio that we have to specify and verify.

In the next chapter we specify some VAMOS functions in the order that does not violate

calling dependencies.
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Figure 5.4: VAMOS functions.
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Figure 5.5: Static call graph of functions relevant to the VAMOS scheduler.
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Chapter 6

Verification Environment

In the Verisoft project we use verification environment developed by N. Schirmer [11]. This

chapter outlines main facilities it provides.

6.1 Hoare Logic for Partial Correctness

In the Verisoft project we use Hoare Logic to verify programs.

Hoare Logic was originally invented by C. A. R. Hoare and in our days widely used for

program verification. In Hoare Logic, consequences of the program run are obtained from the

program code using so-called inference rules (refer, for instance, to [7]).

Hoare Logic argues on the configuration of the program. Implementation is seen at a

coarse-grained level. Implementation data structures and global variables constitute a so-called

state space. We define the state space as a tuple of all the implementation components: global and

local variables, and structures with unfolded fields. The actual code is translated into a logical

representation, i.e. every statement is mapped to a corresponding inference rule.

In order to formally specify a program in Hoare Logic one has to provide pre- and post-

conditions. These are merely assertions on a state space. Then partial correctness is defined as

follows1: a program is correct, if every terminating computation of the program that starts in a

state satisfying its precondition terminates in a state satisfying its postcondition.

1This definition is taken from [12], where you can find more detailed information.
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6.2 Abstraction Relations

Pure Hoare Logic argues only on the implementation layer. But we want to relate abstract

and implementation layers. This is done using so-called abstraction relations. An abstraction rela-

tion is merely a predicate taking certain input parameters from both abstract and implementation

layers. If it holds, the specified relation exists (this relation is called a simulation relation, see [2] for

details). Nevertheless, an abstraction relation is not pure simulation relation, because we expand

it with validity statements.

6.3 Imperative Programming Language

In fact, abstraction relations bind abstract data structures not directly to the implementa-

tion. Instead we using a notion of the state space. In further we relate the VAMOS Configuration

with the VAMOS state space.

C0-implementation of VAMOS is processed by a translator [8]. This translator processes

C0 data structures and returns the VAMOS state space consisting of:

• global variables, whose names are changed to glob 〈variable name〉;

• local variables, whose names are changed to 〈function name〉 〈variable name〉;

• functions, whose names are changed to fun 〈function name〉;

• unfolded C0-structures — tuples of their fields.

For what concerns C0-program itself, it is translated into the imperative programming

language. Imperative programs consist of program constructors that change the state space. In

the following we present their syntax2.

6.3.1 Assignments

The assignment statement of an expression expr to a variable V ar has the following syntax:

V ar :== expr

where

expr, V ar : T.

2The forthcoming subsections are partially taken from [8], where you can find more detailed information.
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An assignment of an expression expr to a field fld of a structure that is pointed to by a

reference r is written as3:

r → fld :== expr

where

r : ref,

expr, r → fld : T;

6.3.2 Conditional Statement

A conditional statement has the following syntax:

IF bool expr THEN statements1 [ELSE statements2] FI

where

bool expr : B.

Here, statements1 and statements2 are sequences of program constructs separated by “; ;”. The

code in square brackets can be omitted. Decision is made depending on the boolean expression

bool expr. If it holds, the sequence statements1 is executed. Otherwise, the sequence statements2

is executed.

6.3.3 Loop

A while loop has the following syntax:

WHILE bool expr DO statements OD

where

bool expr : B

The sequence statements is executed as long as the boolean expression bool expr holds.

3As it was mentioned above, C0-structures are unfolded. This results in the heap functions ref → type for every type

of structures’ fields. Here ref is type of pointers. It is similar to the natural numbers type, but additionally contains the

constant Null denoting undefined pointer. All definitions and explanations can be found in [8].
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6.3.4 Procedure Call

A procedure call has the following syntax:

V ar :== CALL procedure name (in1, in2 . . . , inn)

where

V ar : T

Here the value returned by a procedure procedure name is assigned to a variable Var. Intuitively,

they must have the same type. Input parameters are given in brackets, and have to be separated

by a comma.

6.4 VCG

The basic idea about verification condition generator (VCG) for Hoare Logic is simple.

Given an imperative program c, precondition, postcondition, and some state space S we auto-

matically apply the Hoare rules until we end up in a configuration where the program c is com-

pletely eliminated and a purely logical proof obligation remains. N. Schirmer has implemented

a verification condition generator in Isabelle.

The VCG cannot infer final state space of programs with while loops. Therefore we have

to annotate such programs with loop invariants. This is done using INV construct.
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Chapter 7

Functional Correctness

7.1 Functions on dLists

The VAMOS function perform two very frequent operations on dLists. These operations

were encapsulated into two helper functions: queue InsertTail and queue Rotate . Their

specifications are presented in this section.

7.1.1 The Function queue InsertTail()

This function is intended to enqueue a process into the end of a list.

Signature: queue InsertTailabstr : list(PID)× PID −→ list(PID)

Let us define the updated list:

Rs = queue InsertTailabstr (Ps, prcs),

where

prcs : PID,

Ps, Rs : list (PID).

Precondition: The provided process is not in the target list.

prcs /∈ Ps.
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Postcondition: The provided list is updated accordingly:

Rs = (Ps @ [prcs]).

The implementation of this function in C0 is presented in Appendix B.1. Figure 7.1 presents

the function code translated into the imperative programming language and state space for this

function. Here the variables marked with the acute prefix (’) refer to their values from the current

state space (in other words, at this particular point in the program).

This function invokes functions from the dList package, that are already specified and veri-

fied. Hence proof is simple. With 9 auxiliary lemmata proven the functional verification takes 82

proof steps in Isabelle.

7.1.2 The Function queue Rotate()

This function is intended to enqueue the head of a list to its end (thus, “rotate” the list).

Signature: queue Rotateabstr : list(PID) −→ list(PID)

Let us define the updated list:

Rs = queue Rotateabstr (Ps),

where

Ps, Rs : list (PID).

Precondition: The provided list is not empty.

Ps 6= [ ].

Postcondition: The provided list is updated accordingly:

Rs =
(
(tl Ps) @ [hd Ps]

)
.

The implementation of this function in C0 is presented in Appendix B.2. Figure 7.2 presents

the function code translated into the imperative programming language and state space for this

function.
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state space

res queue InsertTail :: ”ref”

queue InsertTail dummy :: ”ref”

queue InsertTail result :: ”ref”

queue InsertTail dummy int :: ”int”

queue InsertTail len :: ”nat”

queue InsertTail p :: ”ref”

queue InsertTail list :: ”ref”

procedures

fun queue InsertTail (queue InsertTail list, queue InsertTail p | res queue InsertTail) =

”

′queue InsertTail len :== CALL fun dlist pib t queue Length(′queue InsertTail list); ;

IF ′queue InsertTail len = 0 THEN

′queue InsertTail result :== CALL fun dlist pib t queue InsertHead

(′queue InsertTail list, ′queue InsertTail p)

ELSE

′queue InsertTail dummy :== CALL fun dlist pib t queue GetElement

(′queue InsertTail list, ′queue InsertTail len − 1); ;

′queue InsertTail dummy int :== CALLfun dlist pib t queue InsertAfter

(′queue InsertTail dummy, ′queue InsertTail p); ;

′queue InsertTail result :== ′queue InsertTail list

FI; ;

′res queue InsertTail :== ′queue InsertTail result

”

Figure 7.1: The function queue InsertTail() translated into the imperative programming

language.
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state space

res queue Rotate :: ”ref”

queue Rotate result :: ”ref”

queue Rotate list :: ”ref”

procedures

fun queue Rotate (queue Rotate list | res queue Rotate) =

”

′queue Rotate result :== CALL fun dlist pib t queue Delete

(′queue Rotate list, ′queue Rotate list); ;

′queue Rotate result :== CALL fun queue InsertTail

(′queue Rotate result, ′queue Rotate list); ;

′res queue Rotate :== ′queue Rotate result

”

Figure 7.2: The function queue Rotate() translated into the imperative programming lan-

guage.

This function invokes the function dList Delete() from the dList package and the func-

tion queue InsertTail() from the previous section. These are already specified and verified.

The functional verification takes 32 proof steps in Isabelle.

7.2 The VamosData? Predicate

In order to argue about functional correctness of VAMOS we have to state how the VA-

MOS functions change the VAMOS Configuration. We introduce the main abstraction relation

VamosConf?. This abstraction relation comprises the following statements:

1) it relates abstract and implementation layers;

2) it comprises properties of validity of the current VAMOS Configuration;

3) it relates VAMOS and CVM layers.

The first and second statements are combined into the predicateVamosData?. The third one

is realized by the predicates CvmConf? and CvmRelVamos?.
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Let v be a VAMOS Configuration and S a state space. We assume that the predicate Va-

mosConf? holds.

For any VAMOS function f we have its specification fabstr that changes the VAMOS Con-

figuration (in the format that is presented in Section 4.3). Applying this function to v we obtain a

subsequent VAMOS Configuration v′.

Suppose that the function f is implemented in C0 and its body changes the state space S

to some state space S′. In the scope of functional correctness we want to assure that v′ is a valid

VAMOS Configuration and that it is related to the state space S′. Therefore we require that the

predicate VamosConf? holds for the updated VAMOS Configuration v′ and the state space S′:

Let

V amosConf? : v conf t× state space t −→ B;

v, v′ : v conf t,

S, S′ : state space t,

V amosConf?(v, S) = True,

and function f is defined: v′ = fabstr(v, inputabstr),

and subsequent state space is: S′,

then V amosConf? v′ S′ = True.

In the frame of this thesis we are only interested in the VamosData? predicate, because

the VAMOS scheduler does not affect the CVM layer. Henceforth we no longer refer to the whole

VAMOS Configuration, but only to the VAMOS Data part. So, the VAMOS functions take a VAMOS

Data record d and several input parameters. They usually return updated VAMOS Data record d′.

We refer to the pair (d, S) as pre-state and to the pair (d′, S′) as post-state of the function call (see

Figure 7.3):

Let d, d′ : v data t, S, S′ : state space t,

V amosData?(d, S) = True,

and function f is defined: d′ = fabstr(d, inputabstr),

and subsequent state space is: S′,

then f is correct if: V amosData?(d′, S′) = True.
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Figure 7.3: Functional correctness.

The VamosData? is very complex and is not presented here completely. Instead we em-

phasize only on those invariants that are relevant to the VAMOS scheduler. Moreover, we stress

only on invariants about validity of the VAMOS Configuration (thus, nothing about support of the

simulation relation).

7.3 Assumptions

In this section we present invariants, which we assume in the pre-state. Most of them are

incorporated into the VamosData? predicate. Two invariants are stand-alone, because they do not

hold for all VAMOS functions. Note that we focus only on invariants relevant to the VAMOS

scheduler and stating about validity of the VAMOS Data.

7.3.1 Assumptions from the VamosData? Predicate

Disjointness of lists of VAMOS

We want to ensure the following:

1) a process cannot be in the same list twice (i.e. list contains distinct elements);

2) a process cannot be in two VAMOS lists simultaneously.

In fact, the VAMOS lists are implemented using the dList package. From their definition it

follows that VAMOS lists are distinct(refer to [10]) and the first goal is obtained.

For the second we remember that every VAMOS process is in one of three states: ready,

inactive or sleeping.
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So, we relate the state of the process with its list membership:

∀i : N.(
i < PID MAX =⇒

(d.gd.P (i).state = inactive ⇐⇒ i ∈ d.gd.inactive)

∧
(
d.gd.P (i).state = ready ⇐⇒ i ∈ (d.gd.rdy ! P (i).pri)

)
∧

(
d.gd.P (i).state = sleeping ⇐⇒ i ∈ d.gd.wkp

)
∧

(
∀j : N. j 6= d.gd.P (i).pri =⇒ i /∈ (d.gd.rdy ! j)

))
. (7.1)

Current process is ready

Another assumption is that the current process is ready. In other words, we want to assure

that dead and sleeping processes are not scheduled.

d.gd.P (d.gd.cup).state = ready. (7.2)

The Ready Lists Array is not empty

As it was mentioned in Section 3.1 the idle process was introduced to overcome the situa-

tion, when all the ready lists are empty. The idle process state cannot be affected by any of the

system calls (e.g. it cannot be killed). The idle process has minimum priority. Thus, it is enough

to state that the ready list with minimum priority is not empty:

d.gd.rdy ! 0 6= [ ]. (7.3)

Length of the Ready Lists Array

The number of the ready lists is equal to the global variable MAX PRIO:

length (d.gd.rdy) = MAX PRIO. (7.4)

Priorities of processes are in correct range

Since priorities are modeled as N we assure they are less than MAX PRIO:

∀prcs : N.
(
prcs < PID MAX =⇒ d.gd.P (prcs).pri < MAX PRIO

)
. (7.5)
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The current max prio is in correct range

The current max prio is less than MAX PRIO (just like any other priority):

d.gd.current max prio < MAX PRIO. (7.6)

7.3.2 Stand-alone Assumptions

We require the predicate VamosData? as a precondition for every VAMOS function. Here

are presented additional assumptions that cannot be embedded into this predicate, because they

do not hold for all VAMOS functions.

The current max prio is correct

We have to guarantee two things about the current max prio value:

• the ready list indexed by it is not empty;

• there is no non-empty ready list with higher priority than current max prio.

We formulate this as follows1:

cmp correct? : v data t −→ B;

cmp correct?(d) ≡
(
c.gv.current max prio = Max

{
x : N

∣∣ x = d.P (prcs).pri, prcs ∈ Rda
})

,

where

Rda ≡
{
x : N

∣∣ d.P (x).state = ready
}
.

The next timeout is correct

We have to guarantee that the next timeout is the minimum timeout over all processes in

the Sleeping List. Let us define the nt correct? predicate:

nt correct? : v data t −→ B;

nt correct?(d) ≡
(
c.gv.next timeout = Min

{
x : N

∣∣ x = d.P (prcs).next timeout, prcs ∈ d.gd.wkp
})

7.4 The VAMOS Functions

We outline here the specifications of the VAMOS functions relevant to the VAMOS sched-

uler. For every function call we give:
1Here the function Max computes the maximum over a set.
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• a short description on what this function calls is intended for;

• its signature — i.e. how it operates on the abstract data structures;

• its precondition — i.e. restrictions on the VAMOS Configuration before an invocation of a

function call. If a precondition does not hold, the VAMOS Configuration is not updated;

• its postcondition — i.e. statements about modifications in VAMOS Configuration de-

pending on input parameters.

Functions presented here operate solely on the VAMOS layer, not touching CVM configu-

ration. Thus, the correctness of these function calls can be specified and proven without arguing

on the CVM layer. Therefore these function calls are modeled as transition functions operating

on the VAMOS Data, but not on the whole VAMOS Configuration.

The VAMOS functions take a VAMOS Data record d and several input parameters

(in1, in2, . . . , inn) and return an updated VAMOS Data record d′.

We refer to the pair (d, S) as pre-state and to the pair (d′, S′) as post-state of function call.

Let

d : v data t, S : state space t;

and function f is defined:

d′ = fabstr(d, in1, in2, . . . , inn).

7.4.1 The Function search next process()

The search next process() function is intented to give the CPU control to the next

ready process. That is the head of the ready list indexed by the current max prio. With assumption

cmp correct? we are sure that this concrete ready list is not empty, so we can refer to the first

element in it. Therefore this function merely assigns the cup to the PID of that process.

There are no input parameters for this function call.

Signature: search next processabstr : v data t −→ v data t.

Let d′ be the updated VAMOS Data:

d′ ≡ search next processabstr(d).
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procedures

fun search next process( | res search next process) =

”

′glob current process :==

CALL fun dlist pib t queue GetElement(′glob ready lists ! (′glob current max prio), 0)); ;

′res search next process :== 0

”

Figure 7.4: The function search next process() translated into the imperative programming

language.

Precondition: As precondition we have only assumptions from Section 7.3:

V amosData?(d, S) ∧ cmp correct?(d) ∧ nt correct?(d).

Postcondition: As postcondition we require the current process to be changed accordingly and,

of course, the VAMOS Data to be valid:

(
d′.gd.cup = hd( d.gd.rdy ! d.gd.current max prio )

)
∧ V amosData?(d′, S′) ∧ cmp correct?(d′) ∧ nt correct?(d′).

The implementation of this function in C0 is presented in Appendix B.3. The functional

correctness is shown for the whole VAMOS state space, which is very big and is not presented

here. Figure 7.4 presents the function code translated into the imperative programming language.

It is easy to see, that the current process is changed to the first element in the ready list indexed by

the value of the current maximum priority. Since the only invoked function dList GetElement

is already verified, functional verification of the function search next process is easy. It takes

77 proof steps in Isabelle.

7.4.2 The Function compute max prio()

The compute max prio() function is used to compute the maximum priority over all

ready processes for a certain VAMOS Data. This function only computes the value and does not

update the VAMOS Data. Taking a VAMOS Data record as an input parameter it returns a natural

number indicating the maximum priority.
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Signature: compute max prioabstr : v data t −→ N

Precondition is that the provided VAMOS Data record is valid:

V amosData?(d, S).

Postcondition: As a postcondition we require that this function returns the index of the non-

empty list with the highest priority:

(
compute max prioabstr(d) = Max

{
i : N

∣∣ i < MAX PRIO ∧ d.gd.rdy ! i 6= [ ]
})

∧ V amosData?(d, S′)

The implementation of this function in C0 is presented in Appendix B.4. Figure 7.5 presents

the function code translated into the imperative programming language. The imperative pro-

gram contains a while-loop. Therefore we have to provide loop invariants. This is done using

INV construct (see Figure 7.6). Here the variables marked with the prefix σ refer to their values

from the pre-state.

After providing loop invariant, we have to prove the following:

1) the precondition implies the loop invariant,

2) the invariant is maintained inside the loop, and

3) the loop invariant together with the loop body imply the postcondition.

The functional verification for this function takes 138 proof steps in Isabelle environment.

7.4.3 The Function wake up()

The wake up() function is intended to remove a process from the Sleeping List and place

it into the corresponding ready list. Thus, the state of the awaking process is changed to ready.

If the priority of the awaking process is greater than the current max prio we have to update the

current max prio and switch to that process.

The only input parameter for this function is the PID of the target process.

Signature: wake upabstr : v data t× N −→ v data t
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procedures

fun compute max prio( | res compute max prio) =

”

′compute max prio prio :== 0; ;

′compute max prio i :== 3− 1; ;

WHILE 0 < ′compute max prio i DO

IF ′glob ready lists ! (′compute max prio i) 6= Null THEN

′compute max prio prio :== ′compute max prio i; ;

′compute max prio i :== 0

ELSE ′compute max prio i :== ′compute max prio i− 1

FI

OD; ;

′res compute max prio :== ′compute max prio prio

”

Figure 7.5: Function compute max prio() translated into the imperative programming lan-

guage.

Let us define:

d′ ≡ wake up abstr(d, prcs);

CUP ≡ d.gd.cup;

prcs is valid? ≡ (prcs 6= IDLE ∧ prcs < PID MAX);

prcs is active? ≡ (d.P (prcs).state = inactive);

prcs is ready? ≡ (d.P (prcs).state = ready);

new pri is valid? ≡ (new pri < MAX PRIO);

cup is prv? ≡ d.P (CUP ).prv;

Precondition is that the target process is in the Sleeping List:

prcs ∈ d.gv.wkp ∧ V amosData?(d, S) ∧ cmp correct?(d) ∧ nt correct?(d).
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procedures

fun compute max prio( | res compute max prio) =

” ′compute max prio prio :== 0; ;

′compute max prio i :== 3− 1; ;

WHILE 0 <′ compute max prio i DO

INV {((
¬(0 < ′compute max prio i)

)
=⇒(

∀j.
(
(j < MAX PRIO) ∧ (′compute max prio prio < j)

)
=⇒

(
(σglob ready lists ! j) = Null

))
∧

(
∀i.

(
(i < MAX PRIO) ∧ (σglob ready lists ! i 6= Null)

)
=⇒ (i ≤ ′compute max prio prio)

)
∧

(
(σglob ready lists ! ′compute max prio prio) 6= Null

))
∧

(
(0 < ′compute max prio i) =⇒(
∀j.

(
(j < MAX PRIO) ∧ (′compute max prio i < j)

)
=⇒ (σglob ready lists ! j) = Null

)
∧ (′compute max prio prio = 0)

)
∧ (′res compute max prio = σres compute max prio)

∧ (′compute max prio i < MAX PRIO)

∧ (0 ≤ ′compute max prio i)

∧ (′compute max prio prio < MAX PRIO)

∧ (0 ≤ ′compute max prio prio)

}

IF ′glob ready lists!(′compute max prio i) 6= Null

THEN ′compute max prio prio :== ′compute max prio i; ;

′compute max prio i :== 0

ELSE ′compute max prio i :== ′compute max prio i− 1

FI

OD; ;

′res compute max prio :== ′compute max prio prio ”

Figure 7.6: Annotating the while loop with invariants.
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Postcondition:

(d′.gd.wkp = d.gd.wkp Delete prcs)

∧
(
(d′.gd.rdy ! d.P (prcs).pri) =

(
(d.gd.rdy ! d.P (prcs).pri) @ [prcs]

))
∧

(
d′.P (prcs).state = ready

)
∧

(
d.gd.current max prio < d.P (prcs).pri =⇒

(d′.gd.current max prio = d.P (prcs).pri) ∧ (d′.gd.cup = prcs)
)

∧ V amosData?(d′, S′) ∧ cmp correct?(d′) ∧ nt correct?(d′).

The implementation of this function in C0 is presented in Appendix B.5. Figure 7.7 presents

the function code translated into the imperative programming language. This function invokes

three other functions:

1) The function dList Delete() from the dList package. Thus, we can rely on the

correctness proofs from this package ;

2) The function queue InsertTail() that enqueues a given element to the end of a

list. This function was specified and verified in the context of this thesis;

3) The function search next process() .

The function wake up() is not verified completely yet.

7.4.4 The Function process switch to()

The process invoking this call voluntarily gives the rest of its timeslice and the CPU control

to a target process. The PID of the target process is provided as input parameter.

This system call was explained in details and modeled in Section 3.3.

Signature: process switch toabstr : v data t× N −→ v data t.

Let us define some abbreviations:

d′ ≡ process switch toabstr(d, prcs);

CUP ≡ d.gd.cup;

prcs is valid? ≡ (prcs 6= idle ∧ prcs < PID MAX);

prcs is ready? ≡ (d.P (prcs).state = ready);

cup is prv? ≡ d.P (CUP ).prv
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procedures

fun wake up(wake up p | res wake up) =

”

′glob wakeup list :== CALL fun dlist pib t queue Delete (′glob wakeup list, ′wake up p); ;

′glob ready lists ! (′wake up p → ′pib t priority) :==

CALL fun queue InsertTail (′glob ready lists ! ((′wake up p → ′pib t priority)), ′wake up p); ;

′wake up p → ′pib t state :== 1; ;

IF ′glob current max prio < (′wake up p → ′pib t priority) THEN

′glob current max prio :== (′wake up p → ′pib t priority); ;

′wake up dummy int :== CALL fun search next process()

FI; ;

′res wake up :== 0

”

Figure 7.7: The function wake up() translated into the imperative programming language.

Precondition: the currently running process has privileges, the provided PID is correct, and the

target process is ready for execution:

cup is prv? ∧ pid is valid? ∧ pid is ready?

∧ V amosData?(d, S) ∧ cmp correct?(d) ∧ nt correct?(d).
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Postcondition:

(
prcs = CUP =⇒ d′ = d

)
∧

(
prcs 6= CUP =⇒

d′.gd.cup = prcs

∧ d′.P (CUP ).ctsl = 0

∧
(
(d′.gd.rdy ! d.P (CUP ).pri) =

(
(d.gd.rdy ! d.P (CUP ).pri) Delete CUP

)
@ [CUP ]

)
∧

(
d.P (prcs).ctsl < (d.P (CUP ).tsl − d.P (CUP ).ctsl) =⇒ d′.P (prcs).ctsl = 0

)
∧

(
d.P (prcs).ctsl ≥ (d.P (CUP ).tsl − d.P (CUP ).ctsl) =⇒

d′.P (prcs).ctsl = (d.P (CUP ).tsl − d.P (CUP ).ctsl)
))

∧ V amosData?(d′, S′) ∧ cmp correct?(d′) ∧ nt correct?(d′).

The implementation of this function in C0 is presented in Appendix B.6. Figure 7.8 presents

the function code translated into the imperative programming language. This function invokes

the following two functions:

1) The function dList Delete() ;

2) The function queue InsertTail() .

The function process switch to() function is not verified completely yet.
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procedures

fun process switch to ( process switch to pid | res process switch to ) =

”

′process switch to return result :== −1; ;

IF ′process switch to pid = (′glob current process → ′pib t pid) THEN

′process switch to return result :== 0

ELSE IF (128 ≤ ′process switch to pid) ∨ (′process switch to pid = 0) THEN

′process switch to return result :== −1

ELSE IF (′glob pib ! (′process switch to pid) → ′pib t state) 6= 1 THEN

′process switch to return result :== −21

ELSE IF (′glob pib ! (′process switch to pid) → ′pib t consumed time) <

((′glob current process → ′pib t timeslice) −

(′glob current process → ′pib t consumed time)) THEN

′glob pib ! (′process switch to pid) → ′pib t consumed time :== 0

ELSE ′glob pib ! (′process switch to pid) → ′pib t consumed time :==

(′glob pib ! (′process switch to pid) → ′pib t consumed time) −

((′glob current process → ′pib t timeslice)− (′glob current process → ′pib t consumed time))

FI; ;

′glob current process → ′pib t consumed time :== 0; ;

′wake up dummy :== CALL fun dlist pib t queue Delete

(′glob ready lists ! ((′glob current process → ′pib t priority)), ′glob current process); ;

′wake up dummy :== CALL fun queue InsertTail (′wake up dummy, ′glob current process); ;

′glob ready lists ! ((′glob current process → ′pib t priority)) :== ′wake up dummy; ;

′glob current process :== ′glob pib ! (′process switch to pid); ;

′process switch to return result :== 0

FI

FI

FI; ;

′res process switch to :== ′process switch to return result

”

Figure 7.8: The function process switch to() translated to the imperative programming lan-

guage.
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7.4.5 The Function process change sched param()

The invoker of this call changes the priority and timeslice of the target process. The PID of

the target process and the new scheduling parameters are provided as input parameters.

This system call was explained in details and modeled in Section 3.4.

Signature: process change sched paramabstr : v data t× N× N× N −→ v data t

Let us define:

d′ ≡ process change sched paramabstr(d, prcs, new pri, new tsl);

CUP ≡ d.gd.cup;

prcs is valid? ≡ (prcs 6= IDLE ∧ prcs < PID MAX);

prcs is active? ≡ (d.P (prcs).state = inactive);

prcs is ready? ≡ (d.P (prcs).state = ready);

new pri is valid? ≡ (new pri < MAX PRIO);

cup is prv? ≡ d.P (CUP ).prv;

Precondition: the currently running process has privileges, the provided PID is correct, the

provided priority is correct, and the target process is active:

cup is prv? ∧ prcs is valid? ∧ new pri is valid? ∧ prcs is active?.

Postcondition:

d′.P (prcs).tsl = new tsl

∧ d′.P (prcs).pri = new pri

∧
(
prcs is ready? ∧ d.P (prcs).pri 6= new pri =⇒(

(d′.gd.rdy ! d.P (prcs).pri) = ((d.gd.rdy ! d.P (prcs).pri) Delete prcs)
)

∧
(
(d′.gd.rdy ! new pri) = ((d.gd.rdy ! new pri) @ [prcs])

)
∧

(
new pri > d.gd.current max prio =⇒

(d′.gd.current max prio = new pri) ∧ (d′.gd.cup = prcs)
))

∧ V amosData?(d′, S′) ∧ cmp correct(d′) ∧ nt correct(d′).

The implementation of this function in C0 is presented in Appendix B.7. Figure 7.9 presents
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the function code translated into the imperative programming language. This function invokes

the following three functions:

1) The function dList Delete() ;

2) The function queue InsertTail() ;

3) The function compute max prio() .

The function process change sched param() is not verified completely yet.

7.5 Verification Status

The current verification status of the VAMOS functions done in the frame of this thesis is

summarized in Table 7.1. At the moment of writing, the functions check elapsed timeouts

and handler clock are not specified yet.

VAMOS Function Status

Specification Implementation Verification

queue InsertTail + + +

queue Rotate + + +

search next process + + +

compute max prio + + +

wake up + + -

process get my pid + + +

process switch to + + -

process change sched param + + -

check elapsed timeouts - + -

handler clock - + -

Table 7.1: Current status of functional verification.
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procedures

fun process change sched param ( process change sched param pid, process change sched param tsl,

process change sched param prio | res process change sched param) =

” IF ′process change sched param pid = 0 ∨ 128 ≤ ′process change sched param pid THEN

′process change sched param return result :== −1

ELSE IF (′glob pib ! (′process change sched param pid) → ′pib t state) = 3 THEN

′process change sched param return result :== −22

ELSE IF 3 ≤ ′process change sched param prio THEN

′process change sched param return result :== −6

ELSE ′process change sched param return result :== 0; ;

′process change sched param element :== ′glob pib ! (′process change sched param pid); ;

IF ((′process change sched param element → ′pib t state) = 1)∧

((′process change sched param element → ′pib t priority) 6=
′process change sched param prio) THEN

′glob ready lists ! ((′process change sched param element → ′pib t priority)) :==

CALL fun dlist pib t queue Delete (

′glob ready lists ! ((′process change sched param element → ′pib t priority)),

′process change sched param element); ;

′glob ready lists ! (′process change sched param prio) :==

CALL fun queue InsertTail(

′glob ready lists ! (′process change sched param prio),

′process change sched param element); ;

′glob current max prio :== CALL fun compute max prio()

FI; ;

′process change sched param element → ′pib t timeslice :== ′process change sched param tsl; ;

′process change sched param element → ′pib t priority :== ′process change sched param prio

FI

FI

FI; ;

′res process change sched param :== ′process change sched param return result

”

Figure 7.9: The function process change sched param() translated into the imperative pro-

gramming language.
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Conclusion and Future Work

This thesis is the first step in verification of the VAMOS microkernel. We have presented

work done so far in verification of the VAMOS scheduler. We started with introduction of the

whole VAMOS model. Then the scheduler design was given with regard to the VAMOS model.

Designed scheduler is implemented in the programming language C0 and partially veri-

fied in the theorem proving environment Isabelle. We have outlined both implementation and

basis for verification of VAMOS. Specification of the VAMOS functions relevant to scheduler is

presented. As the next step all functions composing scheduler should be verified. After func-

tional verification is done certain fairness properties of the VAMOS scheduler can be proven.

On the time of writing the Verisoft project goes on already for two years. A lot of work is

done, not only in context of pure verification, but also automation of proofs. The verification en-

vironment and Verification Condition Generator developed by N. Schirmer lessen routine work.

With the tool developed by S. Tverdyshev even more proof steps can be automated. Proceeding

with the automation of proofs we help researchers to focus on essence of proofs.
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Appendix A

CVM and VAMOS Layers

Throughout this thesis we refer to the CVM layer and its connections with the VAMOS

layer. Here we present this connection as it is modelled in Isabelle (see Figure A.1).



APPENDIX A. CVM AND VAMOS LAYERS

Figure A.1: The CVM and VAMOS layers.
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Appendix B

C0-implementation

Here we present how the VAMOS functions are implemented in C0.

B.1 The Function queue InsertTail()

Listing B.1: The function queue InsertTail() .

pib_p queue_InsertTail(pib_p list, pib_p p)

{

unsigned int len;

int dummy_int;

pib_p result;

pib_p dummy;

len = dlist_pib_t_queue_Length (list);

if (len == 0u)

{

result = dlist_pib_t_queue_InsertHead (list, p);

}

else

{

dummy = dlist_pib_t_queue_GetElement (list, len-1u);

dummy_int = dlist_pib_t_queue_InsertAfter (dummy, p);

result = list;

}

return result;

}



B.2. THE FUNCTION QUEUEROTATE() APPENDIX B. C0-IMPLEMENTATION

B.2 The Function queue Rotate()

Listing B.2: The function queue Rotate() .

pib_p queue_Rotate(pib_p list)

{

pib_p result;

/ * First remove the head * /

result = dlist_pib_t_queue_Delete (list, list);

/ * and then insert it into the tail * /

result = queue_InsertTail (result, list);

return result;

}

B.3 The Function search next process()

Listing B.3: The function search next process() .

int search_next_process()

{

current_process =

dlist_pib_t_queue_GetElement (ready_lists[current_max_prio], 0u);

return 0;

}
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B.4 The Function compute max prio()

Listing B.4: The function compute max prio() .

unsigned int compute_max_prio()

{

unsigned int i;

unsigned int prio;

prio = 0u;

i = MAX_PRIO-1u;

while ( i > 0u )

{

if (ready_lists[i]!=NULL)

{

prio = i;

i = 0u; / * exit from the loop * /

}

else

{

i = i - 1u;

}

}

return prio;

}
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B.5 The Function wake up()

Listing B.5: The function wake up() .

int wake_up(pib_p p)

{

pib_p dummy;

int dummy_int;

unsigned int len;

assert(p->state==VAMOS_PROCESS_IPC_SEND||p->state==VAMOS_PROCESS_IPC_RECEIVE);

// 1. Take out of the wakeup list

wakeup_list = dlist_pib_t_queue_Delete (wakeup_list, p);

// 2. Append at the appropriate ready list

ready_lists[p->priority] = queue_InsertTail (ready_lists[p->priority], p);

// 3. Set state to ready

p->state = VAMOS_PROCESS_READY;

// 4. Update current_max_prio, if priority is bigger than current_max_prio

// additionally search next process

if (p->priority > current_max_prio)

{

current_max_prio = p->priority;

dummy_int = search_next_process();

}

return 0;

}
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B.6 The Function process switch to()

Listing B.6: The function process switch to() .

int process_switch_to( unsigned int pid)

{

pib_p dummy;

int return_result;

unsigned int len;

int dummy_int;

return_result = -1;

if (pid == current_process->pid)

{

return_result = 0;

}

else

{

if ((pid >= PID_MAX) || (pid == 0u))

{

return_result = VAMOS_RC_INVALID_PID;

}

else

{

if (pib[pid]->state != VAMOS_PROCESS_READY)

{

return_result = VAMOS_RC_PROCESS_NOT_READY;

}

else

{

if (pib[pid]->consumed_time <

(current_process->timeslice - current_process->consumed_time))

{

pib[pid]->consumed_time = 0u;

}

else

{

pib[pid]->consumed_time = pib[pid]->consumed_time

- (current_process->timeslice - current_process->consumed_time);

}

// set consumed_time of current_process to 0

current_process->consumed_time = 0u;
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// put current_process at the end of its ready list -- first remove, then put to the

end

ready_lists[current_process->priority] =

dlist_pib_t_queue_Delete (ready_lists[current_process->priority], current_process);

ready_lists[current_process->priority] =

queue_InsertTail(ready_lists[current_process->priority], current_process);

// set current_process to the new one

current_process = pib[pid];

return_result = 0;

}

}

}

return return_result;

}
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B.7 The Function process change sched param()

Listing B.7: The function process change sched param() .

int process_change_scheduling_param ( unsigned int pid, unsigned int tsl, unsigned int

prio)

{

pib_p element;

pib_p dummy;

int return_result;

unsigned int len;

int dummy_int;

if (pid==0u||pid>=PID_MAX)

{

return_result = VAMOS_RC_INVALID_PID;

}

else

{

if (pib[pid]->state==VAMOS_PROCESS_INACTIVE)

{

return_result = VAMOS_RC_PROCESS_INACTIVE;

}

else

{

if (prio>=MAX_PRIO)

{

return_result = VAMOS_RC_INVALID_ARGS;

}

else

{

return_result = 0;

element = pib[pid];

if ( (element->state == VAMOS_PROCESS_READY) && (element->priority != prio) )

{

/ * Must switch to different ready list * /

/ * Dequeue * /

ready_lists[element->priority] =

dlist_pib_t_queue_Delete (ready_lists[element->priority], element);

/ * Insert element in appropriate ready list * /

ready_lists[prio] = queue_InsertTail (ready_lists[prio], element);
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/ * Recompute the maximum priority * /

current_max_prio = compute_max_prio();

} //end if element->state

/ * Update the values of timeslice and priority * /

element->timeslice = tsl;

element->priority = prio;

} //end if prio>= MAX_PRIO

} //end if pib[pid]...

} //end if pid==0u...

return return_result;

}
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The Function get my pid

The function get my pid is not relevant to the VAMOS scheduler, but it was specified and

verified in the frame of this thesis. This function implements the system call processGetMyPid.

This system call is used to get the process identifier of the invoker (i.e., the currently running

process). Since processes are restricted to access a microkernel internal information, that is the

only way for a process to get his own PID. The returned PID can be used for IPC communication,

etc.

This system call has no input parameters.

This system call has no preconditions, and can be invoked by unprivileged processes.

Signature: process get my pid : v data t −→ N.

Postcondition: process get my pid(d) = d.gd.cup .

The implementation of this function in C0 is presented in Listing C.1. Figure C.1 presents

the function code translated into the imperative programming language. The functional verifica-

tion takes 6 proof steps in Isabelle.



APPENDIX C. THE FUNCTION GETMYPID

procedures

fun process get mypid( | res process get mypid) =

”

′res process get mypid :== ((′glob current process → ′pib t pid))

”

Figure C.1: The function process get my pid() translated into the imperative programming

language.

Listing C.1: The function process get my pid() .

unsigned int process_get_my_pid()

{

return (current_process->pid);

}
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