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Abstract

Circuit codes in hypercubes are generalized snake-in-
the-box codes and are used in analog-to-digital conver-
sion devices. The construction of the longest known
circuit codes is based on either an exhaustive search or
an algorithm that restricts the search to the codes with
periodic coordinate sequences. In this paper, we de-
scribe an efficient SAT encoding of circuit codes, which
enabled us to obtain new circuit codes.

1. INTRODUCTION

In 1958, W. H. Kautz brought attention to
the snake-in-the-box problem—finding a binary code
that has unit distance between adjacent code words
and minimum distance two between all other code
words [14]. The search for snakes is motivated by
the theory of error-correcting codes (as the vertices of
a solution to the snake or coil in the box problems
can be used as a Gray code that can detect single-
bit errors), electrical engineering, computer network
topologies [1], Systems Biology [9], etc. Approaches
to find long snakes range from studies of mathematical
constructions (e.g. binary necklaces [17]) and certain
patterns in lower dimensions [20, 19] to genetic algo-
rithms [1, 2, 22].

R. C. Singleton generalized the concept of snake-
in-the-box codes to circuit codes with a parameter
spread [21]. A circuit code of spread δ has unit distance
between adjacent code words, and minimum distance δ
between code words δ apart in the ordered sequence.
For example, the circuit codes with the spread δ = 2
are the coil-in-the-box, and the codes with δ = 1 and
2n distinct code words are the Hamiltonian cycles of
the n-cube. Singleton then presented constructions for
circuit codes for spreads up to 7.

Circuit codes are useful in correcting and limiting
errors in analog-to-digital conversion (see [16]). The
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longer the code, the greater the accuracy of the sys-
tem (while the greater the spread, the greater the
error-detection capability). Therefore, determining the
length of the longest n-dimensional circuit code of
spread δ is of interest [8, 23].

V. Klee showed the construction of a code with even
spread δ by extending a code of spread δ using a code
of spread δ−1 [15]. K. Deimer described a method for
finding a circuit code of spread δ and length L−k in
the n-cube from a circuit code in dimension n + 1 of
spread δ+1 and length L [4]. Here k is the number of
times a certain transition is taken (this transition num-
ber is then removed from the transition sequence). It is
not evident that finding such a code (of higher spread
and length, in higher dimension) is easier than the tar-
get circuit code. Paterson and Tuliani presented a con-
struction method based on binary necklaces [17], gen-
eralizing ideas for obtaining single-track circuit codes
of [7]. In earlier work, we improved lower bounds and
proved optimality of circuit codes for 14 different sets of
parameters (n, δ) [24]. The approach uses a SAT-solver
and is not limited to specific values of a spread.

In this paper, we present new (longer than previ-
ously known) circuit codes that we have obtained using
a novel efficient propositional satisfiability encoding.

2. CIRCUIT CODES

Consider an ordered sequence C of L binary code
words W0,W1, . . . ,WL−1. Let dk,mH denote the Ham-
ming distance between code words Wk and Wm:

dk,mH =
∣∣{ i | Wk[i] 6= Wm[i]}

∣∣ ,
where Wk[i] denotes the i-th bit of k-th code word, and
let dC be the cyclic distance between code words in the
sequence [12]:

dk,mC = min{|k −m|, L− |k −m|} .

A path in a hypercube is a sequence of code words,
in which consecutive elements have unit Hamming dis-



tance. In a cycle, the first and the last code words also
have unit Hamming distance:

∀k ∈ {0, 1, . . . , L} :

dk,k+1 mod L
C = 1 =⇒ dk,k+1 mod L

H = 1 .

The definitions of circuit codes by Paterson
and Tuliani [17] and by Preparata and Niev-
ergelt [18] differ slightly, but were proven equivalent
by L. Haryanto [12].

Definition 1 (Circuit code [13]). A length L, spread δ
circuit code in the n-cube (or (n, L, δ)-CC) is a cyclic
path C of L binary n-tuples W0,W1, . . . ,WL−1 with the
property that for all k,m ∈ {0, 1, . . . , L− 1},

dk,mH < δ =⇒ dk,mC < δ . (1)

3. PROPOSITIONAL SAT ENCODING

A SAT solver determines whether a propositional
formula, given in conjunctive normal form (CNF), is
satisfiable. If it is, the solver provides a satisfying as-
signment to the variables in the formula.

In this section, we describe our encoding of a search
for circuit codes into a propositional SAT formula in
detail. Then, we improve it using an observation about
the circuit codes’ structure and obtain new codes.

3.1. The Satisfiability Problem

Let V = {x0, x1, . . . , xt−1} be a set of Boolean
variables. A literal is a variable xi or its negation
¬xi. Let φ be a propositional formula over the vari-
ables in V . The propositional satisfiability (SAT) prob-
lem [10] is to determine whether there exists an assign-
ment of truth values to the variables in V such that the
formula φ evaluates to true.

3.2. Encoding of Circuit Codes

Our goal is to construct a formula with satisfying
assignments corresponding to the coordinates of the
nodes forming a spread-δ circuit code of L code words
in the n-cube. For this purpose, we define n·L Boolean
variables denoted byWi[j], where i ∈ {0, . . . , L−1} and
j ∈ {0, . . . , n− 1}. The Boolean vector Wi denotes the
coordinates of node number i of the code, where Wi[0]
corresponds to the right-most bit of the coordinates of
node Wi.

For a sequence of nodes W0,W1, . . . ,WL−1, we en-
code the following constraints:

1. To form a cycle in an n-cube, the neighbouring
nodes of a sequence must be adjacent. The adja-
cency is expressed using the Hamming distance:

φcycle :=
∧L−1

k=0

(
dk,k+1 mod L
H = 1

)
. (2)

2. The formula (1) suggests to pick pairs of code-
words Wk and Wm, that are at least δ apart in the
sequence1 and require their Hamming distances
to be at least δ:

φδ :=
∧

0≤k<m<L

(
dk,mC ≥ δ ⇒ dk,mH ≥ δ) . (3)

The propositional formula

φCC := φcycle ∧ φδ (4)

encodes an (n, L, δ)-CC. A satisfying assignment
of φCC contains the coordinates of some circuit code
with these parameters.

We encoded formulae (2) and (3) using once-twice
chains and bitonic sorting networks respectively (for
details, see [3]) and obtained new circuit codes in [24].

3.3. A More Efficient Encoding

One can reduce the number of variables and clauses
by a factor of two.

Consider nodes Wk and Wm together with neigh-
bours of Wm: Wm−1 and Wm+1. If Wk is at least δ
apart in the sequence from each of these three nodes,
we have to require that their Hamming distances are
at least δ each (see Figure 1).

Suppose that k and m are of the same parity, i.e. the
distance dk,mC is even. Then, by 2-colourability of a hy-
percube [11], the Hamming distance is also even. If
the value of the spread is odd, we can strengthen the
property (3) to dk,mH ≥ δ + 1, which implies the sepa-
rability condition for Wk and neighbours of Wm (be-
cause Hamming distances for them may decrease only
by one). In Eq. (3) we can therefore reduce the number
of constraints by about one half due to redundancy.

3.4. Evaluation

1With such a formulation, for codes with higher spreads there
are fewer of pairs to consider (given that dimension and length
are fixed), hence an encoding of these codes requires fewer vari-
ables and clauses. This is advantageous as performance of exist-
ing approaches decays with increasing spread (e.g., the construc-
tion in [17] uses special kinds of binary necklaces and finding
them for higher spreads is hard).
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Figure 1: Constraints on code words to form a circuit
code.

We generalize this observation, by modifying the
Eq. (3) as follows:

φδ
′

:=
∧

0≤k<m<L

((
(dk,mC mod 2 6= δ mod 2)

∧ dk,mC ≥ δ
)
⇒ dk,mH ≥ δ + 1

)
. (5)

The modified encoding of a (10, 84, 3)-CC takes
49.9% less variables and clauses. The runtime2 for this
instance is decreased by 51.5%.

Using the efficient encoding we obtained 11 new cir-
cuit codes (see Table 1).
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