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Abstract 

The final qualifying work contains the report with 122 pages in A4 format, 

including 29 figures, 6 tables, and 23 references. 

OPERATING SYSTEM, KERNEL, MICROKERNEL, FLEX-PAGE, PAGER, 

SCHEDULING, THREAD, TASK, ADDRESS SPACE, MAPPING, GRANTING, INTER­

PROCESS COMMUNICATION 

There is a project at our chair that aims to verify a complete implementation of a 

microkernel OS. The goal of this thesis is to discover all the nasty details of the 

L4Ka::Hazelnut system calls, helping the developers of this new (to be verified) 

microkernel to lay down a clearer and simpler interface for the user application. 

The results obtained in this thesis have showed that L4Ka::Hazelnut 

microkernel not only has negligible errors in implementation, but also vulnerable to 

malicious behavior of user-level tasks. Thus, even main principles of it fail. For 

example, there are some Denial of Service attacks possible via page fault mechanism 

provided by L4Ka kernel. Scheduling principle also vulnerable to Denial of Service 

attacks. 
For all these reasons, our chair develops new microkernel operating system, 

which in the near future will be proven. Safety will be provided by correctness and 

liveness proof of processor VAMP (DLX processor with pipeline), programming 

language C0 (subset of C), compiler and operating system SOS (Simple Operating 

System). Last two to be written in C0, guarantee the reliability. All parts of a system will 

be proven in Isabelle (automated theorem proover). 
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Introduction

Most operating systems are either microkernel­based systems or macrokernel (or mono­

lithic kernel) based systems. Early system designers did not consider the need to keep kernels

small. But in current time it is essential. For example, dependable systems need to operate

quick and reliable.

As a result, the kernel is reduced to a bare minimum set of primitives and abstrac­

tions without compromising on the variety of applications it may serve. Other functional­

ity is implemented at the user level as external servers, giving rise to a client­server archi­

tecture in the operating system. Such an operating systems (with small kernel) are called

microkernel­based. There are already exist examples of microkernel­based operating systems.

L4Ka is being one of them. L4Ka is designed with three primary goals in mind:

minimality, generality and performance. A minimalist approach assists in the generality

of the system, since few assumptions and policies are enforced by the kernel. One of the

intentions of L4Ka is to be the nucleus of a wide range of full­featured operating systems.

At the time of writing, there is no microkernel that has been formally proven to

be strictly adhering to its specification. And this is too complex to be done on monolithic

kernels.

There is a project at our chair that aims to verify a complete implementation of a

microkernel OS. The goal of this thesis is discover all the nasty details of the L4Ka::Hazelnut

system calls, helping the developers of this new (to be verified) microkernel to lay down a

clearer and simpler interface for the user application.

Below is a brief overview of chapter:

Chapter 1. Operating Systems. In this chapter a definition of the operating system is

given. Classification of operating systems by the kernel architecture is presented.

Chapter 2. L4Ka. The design philosophy of L4Ka microkernel operating system is

given. All the main mechanisms are described.
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Chapter 3. L4Ka Data Types. In this chapter all the data types used by L4Ka to operate

are described precisely.

Chapter 4. L4Ka System Calls. In this chapter system calls of L4Ka are described. Also

C interface for them is presented.

Chapter 5. L4Ka IPC. The main mechanisms of L4Ka, Inter­process Communication,

is described in details.

Chapter 6. L4Ka Additional Information. In this chapter some additional information

about L4Ka is gathered.
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1 Operating Systems

An operating system is a program, which drives the resources of the system and

provides the interface for applications programs that use the system.

Managing the hardware resources is needed, because various programs compete for

the attention of the central processing unit (CPU), demand memory, storage and input/out­

put (I/O) bandwidth for their own purposes. The operating system makes sure that each

application gets the necessary resources.

Providing a consistent application interface, is necessary to hide the complexity and

the variety of the hardware to the software. A consistent application program interface (API)

allows a software developer to write an application on one computer and have a high level

of confidence that it will run on another computer of the same type, even if the amount of

memory or the quantity of storage is different on the two machines.

1.1 Classification by Kernel Architecture

Operating Systems can be written so that most services are moved outside the OS

core and implemented as processes. This OS core then becomes a lot smaller, and called

“kernel”. When this kernel only provides the basic services, such as basic memory manage­

ment and multithreading, it is called a microkernel or even nanokernel for the super­small

ones. To stress the difference between the Unix­type of OS, the Unix­like core is called a

monolithic kernel. A monolithic kernel provides full process management, device drivers,

file systems, network access etc.

1.1.1 The OS without Kernel

Not all operating systems have a “kernel” which is protected from user programs

and which manages the hardware and the user programs. Some operating systems, the

early ones, just provided some interface to the hardware programs could run on, but did

9
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not protect themselves from these programs or did not offer to protect the programs from

each other.

1.1.2 OS with a Kernel

This architecture evolved to an OS design with two rings: one ring running in sys­

tem mode, and a ring running in user mode. The kernel has full control over the hardware

and provides abstractions for the processes running in user mode. A process running in user

mode cannot access the hardware, and must use the abstractions provided by the kernel. It

can call certain services of the kernel by making “system calls” or kernel calls. The kernel

only offers the basic services. All others are provided by programs running in user mode.

There are several ways to define the kernel of an operating system:

– mandatory — the kernel denotes the essential part of the operating system com­

mon to all other software [1];

– fundamental — the kernel provides the most fundamental features upon which

the rest of the operating system relies on. The system cannot function if it is

deprived of kernel services;

– privileged — the kernel runs in privileged mode, therefore it is able to access the

hardware in every way possible. No other mechanisms control the kernel except

itself;

– irreplaceable — the kernel is the static part of the system that is cannot be modi­

fied or replaced during run­time. There cannot be two competing versions of the

kernel in the operating system at once.

Most operating systems are either microkernel­based systems or macrokernel (or mono­

lithic kernel) based systems. The distinction lies in the design of the operating system, in par­

ticular how much functionality is to be offered by the kernel. This design decision invariably

affects the size of the kernel, hence the naming. Traditionally kernels are monolithic in na­

ture, and it remains the more popular approach today. The microkernel approach is newer

but less commonly used.

1.2 Monolithic Kernels

Early system designers did not consider the need to keep kernels small. Later oper­

ating systems were based on older ones for code reuse and backwards compatibility, while
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providing many new features and satisfying new requirements that older systems did not

have. As a result, modern kernel have become much larger than earlier ones. Different as­

pects of functionality are built on and dependent on each other in a layered structure, which

gives rise to the name of monolithic kernels.

Although monolithic approach is the older of the two, it is still used in most operat­

ing systems, an example is mainstream Linux. This is due to a variety of reasons. Both code

and design of older operating systems are often recycled in its newer versions to save devel­

opment time and ensure compatibility within the lineage. This is especially important for

systems that are widely used. Another major reason is the difficulties encountered by mi­

crokernel research in its early stages. The idea of microkernel design was considered to be

very appealing by the systems research community. However, first generation microkernels

did not deliver on promises theoretically achievable by this approach [1]. To an extent the

community has shunned the microkernel approach as a practical way of building operating

systems, albeit prematurely. Without a better alternative, designers retain the old paradigm.

VFS, Network 

IPC, File System 

Scheduler 

Device drivers, MMU 

Application 

CPU, Hardware devices 

User mode 

Kernel Mode 

Hardware 

Figure 1.1: Monolithic Kernel Layout (adopted from [2])

1.2.1 Critique of Monolithic Kernel Systems

While monolithic kernel design is the prevalent approach today, it is not without

its problems. Monolithic kernels are seldom modular, therefore it is difficult to separate

individual kernel components that provide independent features. Rather, components are

tightly coupled to each other. Strong coupling and co­dependencies are detrimental to sys­

tem development and maintenance, making feature enhancements more difficult. As re­

quirements for modern operating systems accumulate, maintenance consumes a dominant
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proportion of development cost. In addition, the complexity of the kernel makes it prac­

tically impossible to mathematically prove that the system is secure for reliability­critical

applications.

Monolithic kernels also lack flexibility from the constraints of the initial design. The

more assumptions a kernel makes about the underlying hardware architecture, the harder

it is for the kernel to be ported to a platform other than the initial one its is designed for. It

is also more difficult for a kernel that is highly optimized for a particular usage to adapt to

another purpose. This is an even worse problem for monolithic kernels, since a larger kernel

invariably makes more assumptions about its purpose, as manifested in the data structures,

algorithms and optimizations used within the system.

1.3 Microkernels

As an increasing number of requirements are demanded from the operating system,

advances in software development technologies permitted new and novel system designs

that are able to handle a range of different requirements. A natural progression form the

singular, large and layered monolithic operating system design is to separate, segregate and

modularize the system architecture.

As a result, the kernel is reduced to a bare minimum set of primitives and abstrac­

tions without compromising on the variety of applications it may serve. Other functionality

is implemented at the user level as external servers, giving rise to a client­server architecture

in the operating system.

Microkernel layout is depicted in Figure 1.2. Microkernel (µ­kernel) provides mini­

mum set of primitives, other functionality is implemented at the user level. Several operat­

ing systems or services (e­mail server, ftp daemon, etc) can be placed on top.

12
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IPC 

security 

kernel−level 

scheduling 

virtual 

memory 

threads 

file system network 

user−level 

scheduling 

device 

drivers 

KERNEL 

OS 
1 

OS 
2 

... 

Figure 1.2: Microkernel Layout.
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2 L4Ka

The L4 microkernel project was originally founded by Jochen Liedtke in the 1990’s.

It is currently headed by the L4Ka team based at the University of Karlsruhe, Germany.

It is one of the most active microkernel projects at present, with a number of related and

client projects — for example, Mungi [3] and Sawmill Prime [4]. L4 is formally specified by

a platform­independent specification; implementations exist on many different platforms.

The first available implementation of version 4 was developed by the L4Ka team in collabo­

ration with the DiSy group at the University of New South Wales, codenamed Pistachio [5].

Currently, Pistachio runs on a wide variety of architectures, such as IA­32, IA­64,

PowerPC­32, Alpha 21164/21264, MIPS, and StrongARM (see [5]). Recently, it has also been

ported to the PowerPC­64 architecture.

This chapter describes the L4Ka microkernel system and its design. A brief sum­

mary of the mechanisms and abstractions provided by the L4Ka specification is presented

in this chapter.

2.1 Design Philosophy

L4Ka is designed with three primary goals in mind: minimality, generality and per­

formance [6]. These three criteria dictate the way L4Ka is designed and built. L4Ka avoids

the problems of earlier microkernels, which were relatively large and bloated, and aims to

include a minimal set of features able to derive the maximum set of functionality outside

of the core kernel. A minimalist approach assists in the generality of the system, since few

assumptions and policies are enforced by the kernel. One of the intentions of L4Ka is to be

the nucleus of a wide range of full­featured operating systems.

2.1.1 Flexible Model

The minimal primitives provided by L4Ka were designed to support many differ­

ent system architectures on top of it. OS personality uses system calls of a µ­kernel and

14
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hence can abstract from specific of particular hardware. Thus, in order to run OS on another

architecture it is only necessary to rewrite the back­end of a µ­kernel.

The general IPC mechanism may derive different types of communication. A natu­

ral way of utilizing L4Ka IPC is to implement a client­server protocol. A microkernel with

efficient communication primitives makes a strong case for a multi­server operating system.

When IPC is combined with mapping mechanisms, shared­memory communication is also

possible across different processes.

The user has fine­grained control over system policies such as paging and interrupt

handling. L4Ka imposes few restrictions on these mechanism and delegates control to the

user via pager. Pager is a specific process, which handles page faults occurred in the faulter

process. This delegation allows a lot of flexibility for the user to set specific policies at the

operating system level.

Flexibility is also provided by data structures and system calls. As an input param­

eters for those system calls L4Ka uses special data types (hereinafter called base data types).

Base data types of L4Ka can be used in order to express many different entities (e.g. UID

which can stand for identifier of thread, task or interrupt) which makes kernel faster to oper­

ate, but complicates the usage. For what concerns system calls, there are only seven of them.

For example, generic l4_ipc_call incorporates primitives for Send, Receive from, Send to

& Receive (combined send and receive operation), Open Receive (receive from arbitrary client

thread) operations, interrupt handling mechanism, and Sleep function.

2.2 Kernel Mechanisms

The L4Ka µ­kernel provides a small set of mechanisms:

– thread/task management;

– inter­process communication (IPC) — the fundamental mode of communication

between threads;

– address spaces and mapping — a protected set of translations from virtual ad­

dresses to physical memory;

– scheduling — control over the order and duration of execution of runnable threads.

Other functionality traditionally found in the kernel, such as file systems, device

drivers and networking, is built on top of these primitives on the user level. Advanced
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services such as distribution, security policies and persistence, are by no means restricted

by the simplicity of these mechanisms.

2.2.1 Address Space

An address space contains all the data (other than hardware registers) which are

directly accessible by a thread. An address space is a set of translations from virtual to

physical memory (which is partial in the sense that many such translations are undefined,

making the corresponding virtual memory inaccessible). Address spaces in L4Ka can be

recursively constructed: a thread can map or grant parts of its address space into another

thread’s address space.

Mapping means that mapper and mappee will share the region of the address space.

Mappings can be revoked at any time, so the mapper retains full control. Alternatively,

virtual address space can be granted to a different address space. In this case, the granter

relinquishes all control over the data mapped by that part of the address space and no longer

has a valid mapping for that address space region. The granter cannot revoke a grant. The

grantee, in contrast, inherits full control over the granted address space (unless the grant

was read­only, in which case write access is lost.)

Figure 2.1 illustrates the difference between mapping and granting operations: after

grant operation page is no longer represented in the address space of the controller pager.

root pager 

controller pager 

user address space A user address space B 

MAP MAP 

GRANT MAP 

����
����
����
����

����
����
����
����

Figure 2.1: L4Ka Address Spaces and Mapping (adopted from [7])

Note that while a grant is irreversible, the granter, in general, has received the ad­
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dress space (directly or indirectly) via mapping, and an address space at the beginning of

the mapping chain can still revoke the mapping.

Mapping and granting are implemented as operations on page tables, without copy­

ing any actual data. Mapping and granting are achieved as a side effect of IPC operations

and specified by the means of flex­pages. This is not accidental: for security reasons map­

ping requires an agreement between sender and receiver, and thus requires IPC anyway.

The concept of a task is essentially equivalent to that of an address space. In L4Ka, a

task is the set of threads sharing an address space. Creating a new task produces an address space

with one running thread. Strictly speaking, the number of tasks is a constant. There are two

kinds of tasks: active and inactive ones. Creation of task means activation of an inactive one.

Inactive tasks are essentially capabilities (task creation rights). This is important, as a thread

can only create a task if it already owns the task ID to use.

2.2.2 Inter­process Communication

IPC is the fundamental mode of communication and synchronization in L4Ka, and is

also used to transfer access to memory between address spaces. It is the basis for many other

types of operations in the system, therefore it is essential that IPC is implemented efficiently.

This is particularly crucial in µ­kernel­based systems, since the amount of communication

required between components is higher compared to monolithic systems.

The L4Ka µ­kernel provides a total of seven system calls (IPC is one of them). Ev­

erything else must be built on top, implemented by server threads, which communicate

with their clients via IPC. IPC is used to pass data by value (i.e., the L4Ka µ­kernel copies

the data between two address spaces) or by reference (using mapping or granting). IPC

is also used for synchronization (as it is blocking, so each successful IPC operation results

in a rendez­vous), wakeup­calls (as timeouts can be specified), pager invocation (the L4Ka

µ­kernel converts a page fault into an IPC to a user­level pager), and interrupt handling

(the L4Ka µ­kernel converts an interrupt fault into an IPC to a user­level interrupt­handler

from a pseudo­thread). Device control is registered via IPC (although actual device access is

memory mapped).

2.2.3 Threads

A thread is the basic execution abstraction. A thread has an address space (shared

with the other threads belonging to the same task), a UID, a register set (including an in­
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struction pointer and a stack pointer), and a page fault handler (pager). IPC operations are

addressed to threads (via their UIDs). Threads are extremely light­weight and cheap to cre­

ate, destroy, start and stop. The lightweight thread concept, together with very fast IPC, is

the key to the efficiency of L4Ka and OS personalities built on top.

Multiple threads can share the same address space. The combination of an address

space and a set of threads is known as a task in L4Ka. A thread is able to manipulate the

registers of other threads in its own address space/task. When a new task is created, the

first thread is created automatically by L4Ka. This thread may then create other threads.

Pager Threads

Pagers are responsible for handling page faults generated by their subject threads.

When a thread generates a page fault, an IPC containing the faulting memory and instruc­

tion address is sent to the pager. The pager then determines the memory region to grant

to the faulting thread and sends a reply IPC back to the thread. The kernel intervenes dur­

ing the reply to update the relevant data structures. The mechanism to transfer memory

mappings across different address spaces is described in Section 2.2.1.

The elegance of this model is that paging policies are configurable by the user, so a

variety of memory management policies can be implemented. In addition, policies can be

easily changed on­the­fly by switching to a different pager threads. Pagers are also respon­

sible for starting a newly created thread. It does so by sending an IPC containing its initial

stack and instruction pointer. For more detailed picture of such interaction, see Figure 6.2.

Interrupt Handling

Interrupts are abstracted via IPC as well. A thread can ask L4Ka (again, via IPC) to

become the handler of a given type of interrupt, handed out by L4Ka on a first come basis.

When an interrupt of the given type occurs, it is transformed into an IPC message, which is

then forwarded to the handling thread.

2.2.4 Address Space and Mapping (revisited)

The address space is empty upon creation, and it must gain access to memory by

mapping from other address spaces. Mapping operations allow address spaces to share

parts of it with other address spaces. The root address space, known as σ0, is the very

first address space and is a direct mapping onto the physical memory of the system. Sub­
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sequently created address spaces gain access to physical memory by mapping directly or

indirectly onto σ0.

There are no restrictions on the depth of mapping. In other words, mappings can

be recursively propagated down several address spaces. On each mapping, however, access

rights can only be a subset of ones already owned by the mapper. The kernel maintains a hi­

erarchical mapping database that contains the tree representing all mappings in the system.

This is necessary since unmapping operations causes the recursive removal of all mappings

under it. Memory regions are expressed in L4Ka as flex­pages (fpages), which contains the

base address and size of the region. All flex­pages must have a size of a power of two.

Mappings operations can be a grant, where the mapper removes its own mapping

from its parent and transfers it completely to the mappee. In effect, this reduces the number

of unnecessary mappings across layers of address spaces.

Protocol of σ0

σ0 theoretically accepts requests for physical memory from any thread. In practice,

root pagers are written in such a way that they request all physical memory in the system

during initialization time, not lazily upon request. This ensures that no user thread may steal

memory from the system. This also allows partitioning of the physical memory into discrete

portions such that even multiple operating systems can be run on top of L4Ka concurrently

on the same machine without interfering each other [8].

2.2.5 Scheduling

The L4Ka kernel supports scheduling at two levels. The kernel employs a preemp­

tive, hard­priority round­robin thread scheduler, beyond the control of the user. At the user

level, a thread’s priority and its time slice may be controlled and allocated. Every thread has

two time slice values associated with it: the current time slice and the total quantum, the

sum of all time slices. The current time slice determines how long a thread may run before

the next preemptive intervention from the kernel, and the total quantum is deducted every

time the thread is scheduled. When a thread has exhausted its total quantum its scheduler

will be notified.

Arbitrary scheduling strategies can be implemented on top by modifying the threads’

priorities and time slices. These policies and related data are to be kept in the scheduler

thread’s memory. For more detailed information, see 4.3.3 and [9].
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2.2.6 UID

A UID of a thread is that of its task plus the number of the thread within the task

(sometimes called lthread or local thread number). The UID of a task consists of the task

number, some fields describing its place in the task hierarchy, and a version number. Both,

tasks and threads are limited (in L4Ka for x86 there are 255 tasks and within each task there

are 64 threads). This means that tasks (or address spaces) and threads must be recycled. The

L4Ka µ­kernel ensures uniqueness of task IDs by incrementing the version number when­

ever a task number is reused. Obviously, both thread and task numbers are insufficient for

a real multi­user operating system. This means that an OS personality will in general need

to map its own task and thread abstraction onto L4Ka’s. How this is done is up to the OS

personality, L4Ka only provides the tools.

2.2.7 Resource Allocation

As was mentioned above, the classical job of the OS is resource allocation. In a µ­

kernel­based system, this is left to the OS personality, the L4Ka µ­kernel only provides the

tools, and enforces security. L4Ka’s view of resources is simple: each resource is allocated on

a first­come­first­served basis. This is by no means a free­for­all: The servers implementing

OS personalities are started at boot time by the L4Ka µ­kernel. As they are the first running

tasks, they have the chance to allocate all resources to themselves before any “user” tasks

exist. Initial servers must be contained in the L4Ka boot image, and must be identified as to

be started up by L4Ka.

2.3 L4Ka::Hazelnut

L4Ka::Hazelnut was designed to be portable across 32bit platforms [10]. L4Ka sepa­

rated general code like IPC, thread management, and scheduling from platform dependent

code like pagetable management and exception handling.

The L4Ka::Hazelnut microkernel is currently available for the following processor

families: IA32 (Pentium and higher), ARM (StrongARM SA110 and SA1100) [10].
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2.3.1 Relevance to the Thesis

At the time of writing, there is no microkernel that has been formally proven to

be strictly adhering to its specification. However, this is almost certainly has very large

complexity on monolithic kernels.

There is a project at our chair that aims to verify a complete implementation of a mi­

crokernel OS. The goal of this thesis is to discover all the nasty details of the L4Ka::Hazelnut

system calls, helping the developers of this new (to be verified) microkernel to lay down a

clearer and simpler interface for the user application.

For testing purposes L4Ka::Hazelnut/x86 was used on a VMWare system.

21



 

Изм. Лист № докум. Подпись Дата

Лист

ДП.991137.ПЗ 

3 L4Ka Data Types

In this chapter fundamental data structures used by L4Ka µ­kernel to operate are

presented. They are provided as input parameters for the system calls or returned in regis­

ters. Almost all types are complex and have many fields, which are explained in details in

this chapter.

3.1 Getting Started

At the home page of the L4 community can be found all the kernels, some L4 en­

vironments and L4 based operating systems1. Development of L4Ka is done by System

Architecture Group in University of Karlsruhe.

After extracting source code kernel must be configured properly. In order to boot

up L4Ka kernel and all built applications must be copied to boot image.

The main work of a user­level programmer is to write C code for the root task,

implementing OS personality on top of L4Ka. It is located in apps/root_task/main.c .

In order to use the system calls and data types the user­level programmer should include

system files (usually “l4/l4.h”, “ l4io.h ” and “l4/helpers.h ” is enough). They are

located in apps/include directory (and its subdirectories).

3.2 Base Data Types

Base data types declarations are concentrated in files “l4.h”, “ types.h” and “ ipc.h ”.

Also file “helper.h ” can be helpful. It contains some wrappers for generic L4Ka system

calls. Almost all definitions are taken from these files for x86 architecture. Base data types

are shown in Listing 3.1.
1The home page of the L4 community is located at http://l4hq.org/. The L4Ka research project can be found at http://L4Ka.org/.

L4Ka::Hazelnut kernel is freely downloadable from http://L4Ka.org/projects/hazelnut/download.php.
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Listing 3.1: Base types declarations in “l4.h ”

typedef unsigned long long qword_t;

typedef unsigned int dword_t;

typedef unsigned short word_t;

typedef unsigned char byte_t;

typedef signed long long sqword_t;

typedef signed int sdword_t;

typedef signed short sword_t;

typedef signed char sbyte_t;

typedef dword_t* ptr_t;

Most frequently used types are dword_t (unsigned int) and ptr_t (pointer to

unsigned integer). Since target architecture is 32­bit, almost all data structures are 32­bit

aligned to increase performance. Hereinafter type dword_t is widely used for 32­bit pa­

rameters of functions in L4Ka.

3.3 Unique Ids

As any other multitasking operating system, L4Ka uses some data structures to

identify the processes and applications. Unique ids serves as identifiers for threads, tasks

and hardware interrupts.

Format

Each unique id is a 32­bit value, which is unique until the system is rebooted. An

unique id is presented in Figure 3.1. This picture outlines certain fields, their size and posi­

tion in a 32­bit word. Meaning of all the fields was mentioned above (see 2.2.6).

Table 3.1: Permitted Values for Fields of UID

Field Quantity Available values Comments

Task 255 1­255 task 0 does not exist

Thread 64 0­63

Version 1024 0­1023
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Thread id 

Task id 

Interrupt id 

NIL id 

Invalid id 

0 9 10 15 16 23 24 31 

0 (32) 

0xFFFFFFFF 
(32) 

task (8) ver (10) thread (6) ~ (8) 

task (8) ver (10) 0 (6) ~ (8) 

intr + 1 (8) 0 (24) 

Figure 3.1: Unique Ids

x86 Implementation

Thread ids are defined in file “l4.h” and are presented in Listing 3.2. Note that

chiefs and clans are not implemented in L4Ka, thus first field of unique ids no more mean­

ingless.

Listing 3.2: Thread id implementation in “l4.h ”

typedef union {

struct {

unsigned version : 10;

unsigned thread : 6;

unsigned task : 8;

unsigned chief : 8;

} id;

dword_t raw;

} l4_threadid_t;

/*

* Some well known thread id’s.

*/

#define L4_KERNEL_ID ((l4_threadid_t) { id : {0,1,0,0} })

#define L4_SIGMA0_ID ((l4_threadid_t) { id : {1,0,2,4} })

#define L4_ROOT_TASK_ID ((l4_threadid_t) { id : {1,0,4,4} })

#define L4_INTERRUPT(x) ((l4_threadid_t) { raw : {x + 1 } })

#define L4_NIL_ID ((l4_threadid_t) { raw : 0 })

#define L4_INVALID_ID ((l4_threadid_t) { raw : ˜0 })

#define l4_is_nil_id(id) ((id).raw == L4_NIL_ID.raw)

#define l4_is_invalid_id(id) ((id).raw == L4_INVALID_ID.raw)
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Thread id is defined as a union l4_thread_id_t . Dword field raw allows access

in a raw mode. A structure id contains all the fields as a bit vectors according to Figure 3.1.

Here are also some well known thread id’s:

– L4 SIGMA0 ID specifies thread id of σ0 pager;

– L4 ROOT TASK ID is task id of the root task (which starts after OS bootstrap and

grabs all available memory from σ0 pager);

– L4 KERNEL ID is used to distinguish between the kernel and user­level threads

(it is used inside the kernel and in σ0, not necessary on user level);

– L4 INTERRUPT is a macros to define interrupt handler’s thread id;

– L4 NIL ID indicates, that the id of the task/thread is not valid, i.e. all entries are

set to 0. It is used for example if the task creation fails (see Sections 4.2 and 4.5.6).

Since for interrupt handlers there is a special thread id format, it is declared in rather

easier way in “types.h ” as a structure l4_intrid_struct_t . For simplified access there

is also union l4_intrid_t , which allows to use it in a raw mode through field dw. Imple­

mentation is shown in Listing 3.3.

Listing 3.3: Thread id for interrupt handlers in “types.h”

typedef struct {

unsigned intr:8;

unsigned char zero[3];

} l4_intrid_struct_t;

typedef union {

dword_t dw;

l4_intrid_struct_t id;

} l4_intrid_t;

Task id is defined in the same way as thread id (see Listing 3.4). The user must

manually set thread field to zero value.

Listing 3.4: Task id implementation in “types.h”

typedef l4_threadid_t l4_taskid_t;
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3.4 Flex­pages

Abstraction

Main abstraction of L4Ka operating system is contiguous regions of address space

called flex­pages (fpages). Flex­pages are required for mapping and granting virtual mem­

ory. Flex­pages are specified by the mapper and received by the mappee as part of an IPC

message. For each flex­page successfully received, the valid pages within that flex­page

become a part of the receiver’s address space (mapped or granted to it).

Definition

Flex­pages are regions of the virtual address space. A flex­page consists of all pages

actually mapped in this region. A flex­page has the following properties:

– size is 2s bytes. The smallest size allowed for any flex­page is the hardware page

size. On the x86 processors, the smallest possible value for s is 12, therefore hard­

ware pages are at least 4K;

– base address b of flex­page is aligned to 2s (base address mod 2s = 0);

– contains all the mapped pages within the region described by the flex­page. That

is, those pages which belong to the specified region and which have been mapped

into the sender’s virtual space.

Format

A flex­page is specified by providing the values b and s. The flex­page is then de­

fined to be the region [b × 2s, (b + 1) × 2s]. A flex­page with base address b and size 2s is

denoted by a 32­bit word as depicted in Figure 3.2.

Fpage(b, 2 s ) ~ ~ 0 (4) s (6) b/4096 (20) 

0 7 8 11 12 31 1 2 

Figure 3.2: Flex­page Format

A flex­page, which covers complete user address space (with base address 0, size

232 −K, where K is the size of the kernel area) is denoted by b = 0, s = 32 (see Figure 3.3).

In addition, a hot­spot, h, is also required for the sender if the sender and receiver

specify flex­pages of different sizes.
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Fpage(b, 2 32  − K  ) ~ ~ 0 
(4) 

32 
(6) 

0 
(20) 

0 7 8 11 12 31 1 2 

Figure 3.3: Complete User Address Space Format

Hot­spot

Hot­spot make sense only in the case of memory mappings. It is a 32­bit value

followed by flex­page in IPC messages. Flex­page and hot­spot (followed by it) form a flex­

page descriptor (see Section 5.5.5).

In the case, when sender and receiver specify flex­pages of different sizes, the hot­

spot specification is used to determine how the mapping between the two different size

flex­pages occurs.

If 2s is the size of the larger, and 2t the size of the smaller flex­pages, then the larger

flex­page can be thought of as being tiled by 2s−t flex­pages of the smaller size. One of these

pages is uniquely identified as containing the hot­spot address (mod 2s). This is the flex­page

which will actually be mapped/granted.

Figure 3.4 gives two examples of mappings which involve different flex­page sizes.

The figure also illustrates the fact that the receiver’s flex­page allows the receiver to specify

the window where mappings are permitted to occur (greater security). In first situation 1K

page at address 5K is mapped into a 4K space at zero address. Hot­spot is used to determine

into which 1K chunk of 4K page data have to be mapped. Hot­spot assigned to 2K (with

some negligible offset). Thus, page is mapped at address 2K. Second illustration covers

opposite situation: data to be mapped from 4K space into 1K. As before, the bigger page is

tiled according to the size of the smaller one. And again hot­spot determines offset of chunk

to be mapped.

A precise definition of the intuitive description above is now given for completeness.

If the sender defines its flex­page as b, s, h and the receiver defines its flex­page as b�, s� then

the mappings for the three situations would be:

s = s�: b× 2s �−→ b� × 2s, hot­spot is not used;

s� > s: b× 2s �−→ b�[31:s�]h[s�:s−1]0
s, the sender’s flex­page is aligned around the hot­spot;

s > s�: b[31:s]h[s−1:s�]0
s� �−→ b� × 2s� , the receiver’s flex­page is aligned around the hot­spot.
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s=10 
b=5 

s=12 
b=0 

h=2 x 2 10  + offset 

s=10 
b=5 

s=12 
b=0 

h=2 x 2 10  + offset 

Figure 3.4: Flex­page Mapping Example Using Hot­spot

x86 Implementation

Flex­pages are implemented in L4Ka as a union l4 fpage t. Listing 3.5 shows, that

this union contains a structure l4 fpage struct t of bit vectors for each field, and integer

fpage of type dword t for a raw access.

Listing 3.5: Declarations concerning flex­pages in “types.h”

typedef struct {

unsigned grant:1;

unsigned write:1;

unsigned size:6;

unsigned zero:4;

unsigned page:20;

} l4_fpage_struct_t;

typedef union {

dword_t fpage;

dword_t raw;

l4_fpage_struct_t fp;

} l4_fpage_t;

#define L4_PAGESIZE (0x1000)

#define L4_PAGEMASK (˜(L4_PAGESIZE ­ 1))

#define L4_LOG2_PAGESIZE (12)

#define L4_SUPERPAGESIZE (0x400000)

#define L4_SUPERPAGEMASK (˜(L4_SUPERPAGESIZE ­ 1))
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#define L4_LOG2_SUPERPAGESIZE (22)

#define L4_WHOLE_ADDRESS_SPACE (32)

#define L4_FPAGE_RO 0

#define L4_FPAGE_RW 1

#define L4_FPAGE_MAP 0

#define L4_FPAGE_GRANT 1

L4_INLINE l4_fpage_t l4_fpage( unsigned long address, unsigned int size,

unsigned char write, unsigned char grant)

{

return ((l4_fpage_t){fp:{grant, write, size, 0,

(address & L4_PAGEMASK) >> 12 }});

}

There is one difference from definition in Figure 3.2: the least significant two bits

are not meaningless in structure l4 fpage struct t and are defined as grant and write

correspondingly. They will be explained and used later to determine operation on flex­page

(mapping/granting) and permission of usage (write/read­only).

There are also some predefined constants in “types.h”:

– L4 PAGESIZE is set to to 4Kbytes. This size of a flex­page corresponds to s = 12;

– L4 LOG2 PAGESIZE is then assigned to 12;

– L4 PAGEMASK is used to mask address. Let us consider an address a, which

belongs to some 4K flex­page. Applying of ordinary AND operation with such a

mask returns the starting address of this contiguous 4K flex­page;

– L4 SUPERPAGESIZE is set to 4Mbytes. This size of a flex­page corresponds to

s = 22;

– L4 LOG2 SUPERPAGESIZE is then assigned to 22;

– L4 WHOLE ADDRESS SPACE is used to define complete user address space;

– L4 FPAGE RO = 0, value for bit write for read­only permissions;

– L4 FPAGE RW = 1, value for bit write in case of write and read permissions;

– L4 FPAGE MAP = 0, value for bit grant to ensure mapping of this page;

– L4 FPAGE GRANT = 1, value for bit grant in case of granting operation.

Function l4_fpage provides simple interface to form a flex­page from given pa­

rameters (it returns value of type l4 fpage t).
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3.4.1 IO­Ports

x86 IO­ports form a separate address space besides the conventional memory ad­

dress space. Its size is 64K and its granularity is 16 bytes. However, IO­ports can only be

mapped idempotent, i.e. physical port N is either mapped at the address N in the task’s IO

address space or it is not mapped.

L4Ka handles IO­ports like memory, i.e. as flex­pages. IO­flex­pages can be mapped,

granted and unmapped like memory flex­pages. However, since IO­ports can only be mapped

idempotent, always the complete IO space (64K) should be specified as receive flex­page.

An IO­flex­page of size 2s (4 ≤ s ≤ 16) has a 2s­aligned base address p , i.e. p mod 2s = 0.

An flex­page with base port address p and size 2s is denoted by a 32­bit word (see Figure 3.5).

s 
(6) 

16 
(6) 

IO−fpage(p, 2 s ) ~ ~ p 
(12) 

0 
(4) 

0xF0 
(8) 

~ ~ 0 
(12) 

0 
(4) 

0xF0 
(8) 

IO−fpage(0, 2 16 ) 

0 7 8 11 12 31 1 2 23 24 

Figure 3.5: Format of Flex­page for IO­port

3.5 Timeout

Timeouts are used to control IPC operations. Each IPC operation specifies four time­

out values. The complete quadruple is packed into one 32­bit word (see Figure 3.6).

p r  (4) e s (4) e r (4) m s (8) Timeout p s (4) m r (8) 

0 11 12 15 16 23 24 31 7 8 3 4 

Figure 3.6: Timeout Format

The first two timeouts are with respect to the time before message transfer starts. These

timeouts are no longer relevant once message transfer starts.

Receive timeout specifies how long to wait for an incoming message. The receive

operation fails if the timeout period is exceeded before message transfer starts. The receive

timeout is calculated as follows:

rcv timeout =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if er = 0;

415−ermr µs if er > 0;

0 if mr = 0, er �= 0;
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Send timeout specifies how long IPC should try to send a message. The send opera­

tion fails if the timeout period is exceeded before message transfer starts. The send timeout

is calculated as follows:

snd timeout =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if es = 0;

415−esms µs if es > 0;

0 if ms = 0, es �= 0.

The other timeout values are used if a page fault occurs during an IPC operation. A

page fault is converted to an IPC to a pager by the kernel (see Section 6.2). The page fault

timeouts are with respect to this IPC message.

Receive page fault timeout is used for both the send and receive timeouts of the page

fault handling when a page fault occurs in the sender’s address space during an IPC. This

value is set by the receiver and is calculated as follows:

rcv pagefault timeout =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if pr = 0;

416−pr µs if 0 < pr < 15;

0 if pr = 15.

Send page fault timeout is used for both the send and receive timeouts of the page

fault handling when a page fault occurs in the receiver’s address space during an IPC. This

value is set by the sender and is calculated as follows:

snd pagefault timeout =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if ps = 0;

415−ps µs if 0 < ps < 15;

0 if ps = 15.

There are two special timeout values: ∞ and 0. An infinite value means no timeout

(i.e. possibly indefinite blocking) and is specified by zero values of e or p. A zero timeout

value represents non­blocking IPC and is specified by zero values of m (with e > 0). A

maximum value for p (p = 15) means that the IPC will fail if a page fault occurs. Besides the

special timeouts, periods from 1 µs up to approximately 19 hours can be specified. They are

shown in Table 3.2.
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Table 3.2: Approximate Timeout Ranges

es, er, ps, pr send/receive timeout pagefault timeout

0 ∞ ∞
1 256 s ... 19 h 256 s

2 64 s ... 4.5 h 64 s

3 16 s ... 71 m 16 s

4 4 s ... 17 m 4 s

5 1 s ... 4 m 1 s

6 262 ms ... 67 s 256 ms

7 65 ms ... 17 s 64 ms

8 16 ms ... 4 s 16 ms

9 4 ms ... 1 s 4 ms

10 1 ms ... 261 ms 1 ms

11 256 µs ... 65 ms 256 µs

12 64 µs ... 16 ms 64 µs

13 16 µs ... 4 ms 16 µs

14 4 µs ... 1 ms 4 µs

15 1 µs ... 255 µs 0

m = 0, e > 0 0 —

x86 Implementation

Timeouts are implemented as a l4_timeout_struct_t structure and a l4_timeout_t

union with additional field for a raw access. These declarations are presented in Listing 3.6.

There are also some useful definitions:

– L4 IPC NEVER sets timeout to infinity value (i.e. possibly indefinite blocking);

– L4 IPC TIMEOUT NULL sets timeout to zero value (non­blocking IPC);

– L4 IPC TIMEOUT — function to fill in all timeout fields.
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Listing 3.6: Timeout declaration in “l4.h ”

typedef struct {

unsigned rcv_exp:4;

unsigned snd_exp:4;

unsigned rcv_pfault:4;

unsigned snd_pfault:4;

unsigned snd_man:8;

unsigned rcv_man:8;

} l4_timeout_struct_t;

typedef union {

dword_t raw;

l4_timeout_struct_t timeout;

} l4_timeout_t;

#define L4_IPC_NEVER ((l4_timeout_t) { raw: 0})

#define L4_IPC_TIMEOUT_NULL ((l4_timeout_t) { timeout: {15, 15, 15, 15, 0, 0}})

#define L4_IPC_TIMEOUT(snd_man, snd_exp, rcv_man, rcv_exp, snd_pflt, rcv_pflt)\

( (l4_timeout_t) {timeout: { rcv_exp, snd_exp, rcv_pflt, \

snd_pflt, snd_man, rcv_man } } )

3.6 IPC Result Status

The status of each IPC operation is returned in a message dope with the format

depicted in Figure 3.7.

strings (5) Result msg_dope cc (8) mwords (19) 

0 7 8 12 13 31 

Figure 3.7: IPC Result Status in Message Dope

m r i Condition code d ec (4) 

0 1 7 2 3 4 6 5 

Figure 3.8: Condition Code of Result Status

Message dope describes received message. If no message was received, only cc is

delivered. Otherwise, all fields are used:

a) mwords determines size in dwords of in­line data received (excluding register

data);

b) strings determines number of strings received;
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c) cc is condition code with format, presented in Figure 3.8. Meaning of these fields

is following:

1) d — deceited message (redirected by a chief). Since clans and chiefs are

not implemented in L4Ka::Hazelnut field is meaningless;

2) m — message includes mapping/granting;

3) r — message was redirected by the L4Ka µ­kernel;

4) i — message comes from an inner clan. Since clans and chief are not

implemented in L4Ka::Hazelnut field is meaningless;

5) ec is an error code associated with the IPC.

For more details see Table 3.3.

Table 3.3: Condition Code Fields

Field Value Description

m 0 The received message does not contain flex­pages.

1 The sender mapped or granted flex­pages. The sender’s flex­page descrip­

tors were also (besides mapping/granting) transferred as mwords.

r 0 The received message was directed to the actual recipient, not redirected.

1 The received message was redirected by a kernel.

ec 0 There are no errors. The optional send operation was successful, and if a

receive operation was also specified (rcv descriptor �= nil) a message was

also received correctly.

�= 0 If IPC fails the condition code is in the range 0x10...0xF0 . If the send op­

eration already failed, IPC is terminated without the potentially specified

receive operation. s specifies whether the error occurred during the receive

(s = 0) operation or during the send (s = 1) operation

1 Non­existing destination or source.

2+s Timeout.

4+s Canceled by another thread (system call l4_thread_ex_regs ).

6 + s Map failed due to a shortage of page tables.

8 + s Send pagefault timeout.

A + s Receive pagefault timeout.

C + s Aborted by another thread (system call lthred_ex_regs ).

continued on the next page
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Table 3.3: (continued)

Field Value Description

E + s Cut message. Potential reasons are (a) the recipient’s mword buffer is too

small; (b) the recipient does not accept enough parts; (c) at least one of the

recipient’s part buffers is too small.

1...5 The according operation was terminated before a real message transfer

started. No partner was directly involved.

6...F The according operation was terminated while a message transfer was run­

ning. The message transfer was aborted. The current partner (sender or

receiver) was involved and got the corresponding error code. It is not de­

fined which parts of the message are already transferred and which parts

are not yet transferred.

L4Ka OS does not store dope word of the received message in the receive mes­

sage buffer. System call for IPC l4_ipc_call returns result status via the last parameter

(pointer to l4_msgdope_t structure, see Section 4.5.7).

x86 Implementation

The message dope is defined as a union l4_msg_dope_t . Dword field raw allows

access in a raw mode. Structure mdcontains all the fields as a bit vectors according to Fig­

ure 3.7. These declarations can be found in file “l4.h ” and are presented in Listing 3.7.

Listing 3.7: Message dope declaration in “l4.h”

typedef union

{

struct {

dword_t msg_deceited :1;

dword_t fpage_received :1;

dword_t msg_redirected :1;

dword_t src_inside :1;

dword_t error_code :4;

dword_t strings :5;

dword_t dwords :19;

} md;

dword_t raw;

} l4_msgdope_t;
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/*

* Some macros to make result checking easier

*/

#define L4_IPC_ERROR(x) ((x).md.error_code)

/*

* IPC results

#define L4_IPC_ENOT_EXISTENT 0x10

#define L4_IPC_RETIMEOUT 0x20

#define L4_IPC_SETIMEOUT 0x30

#define L4_IPC_RECANCELED 0x40

#define L4_IPC_SECANCELED 0x50

#define L4_IPC_REMAPFAILED 0x60

#define L4_IPC_SEMAPFAILED 0x70

#define L4_IPC_RESNDPFTO 0x80

#define L4_IPC_SERCVPFTO 0x90

#define L4_IPC_REABORTED 0xA0

#define L4_IPC_SEABORTED 0xB0

#define L4_IPC_REMSGCUT 0xE0

#define L4_IPC_SEMSGCUT 0xF0

*/

3.7 Schedule Parameter Word

There is only one parameter used for scheduling — param word . It contains all

the necessary fields (see Figure 3.9). Note that here is only presented the format of this

parameter, for a precise description of all the fields and restrictions on them please refer to

Section 4.3.3.

prio (8) 
Param word 

0 7 8 15 16 23 24 31 

e t  (4) small (8) 0  (4) m t  (8) 

19 20 

Figure 3.9: Schedule Parameter Word

Schedule param word fields:

– prio is a priority of the thread;

– small — Sets the small address space number for the addressed task. On Pentium,

small address spaces from 1 to 127 currently available. A value of 0 or 255 in
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this field does not change the current setting for the task. This field is currently

ignored for 486 and PentiumPro (only effective for Pentium);

– mt, me defines time slice length of thread. The time slice quantum is encoded

like a timeout: 415−etmt µs.

There is also special value for schedule parameter word — 0xFFFFFFFF. It is called

invalid and used to get current state of thread (thus, current priority and time slice length are

not modified) when provided to a l4_thread_schedule system call (see Section 4.5.5).

x86 Implementation

Definition of the schedule parameter word is presented in Listing 3.8.

Listing 3.8: Schedule Parameter Word from “types.h”

typedef struct {

unsigned prio:8;

unsigned small:8;

unsigned zero:4;

unsigned time_exp:4;

unsigned time_man:8;

} l4_sched_param_struct_t;

typedef union {

dword_t sched_param;

l4_sched_param_struct_t sp;

} l4_sched_param_t;

#define L4_INVALID_SCHED_PARAM ((l4_sched_param_t){sched_param:­1})
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4 L4Ka System Calls

4.1 Overview

File “apps/include/l4/x86/syscalls.h ” contains declarations of all system

calls of L4Ka::Hazelnut. Almost all of them are described in this chapter:

– l4 fpage unmap is used to unmap flex­page from all address spaces of invoker;

– l4 myself is used to obtain UID of the current thread;

– l4 thread ex regs is used to create threads. Also reads and writes some register

values of a thread in the current task;

– l4 thread switch is used to release the CPU for other ready threads;

– l4 thread schedule is used by scheduler to define the priority and the time slice

length of threads;

– l4 task new is used to delete and/or create a task.

For a l4 ipc call system call only C interface is presented. It is used for inter­process

communication and synchronization. This generic system call provides several mechanisms

for IPC (Send, Receive from, Send to & Receive, Open Receive), interrupt handling (see Sec­

tion 6.4) and Sleep operation. Sufficient information concerning inter­process communica­

tion is presented in the next chapter.

Since clans and chiefs are not implemented in L4Ka::Hazelnut, system call l4 nchief

(to get the next chief) is useless.

4.2 Task Creation and Deletion

A task can be in either an active or an inactive state. Creating an active task creates

a new address space as well as the maximum number of threads for a task (64). Initially,

all the threads of an active task except for one (called thread 0) are inactive. In contrast, an

inactive task has no address space and no threads and thus consumes no resources.
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The L4Ka µ­kernel only allows a certain number of tasks to be created (see Table 3.1).

UIDs are assigned to tasks on a first­come­first­served basis with subsequent attempts to cre­

ate a new task failing. Thus, the purpose of creating an inactive task is essentially reserving

the right to create, later on, an active task. Deleting a task removes the address space and all

associated threads of the task.

Task creation and deletion is done by using the l4_task_new system call. This

system call first deletes a task (active or inactive) and creates a new one (active or inactive).

If the task is created active, it gets the same task number (as provided in the dest parameter)

but a different version number, hence producing a different ID. An active task is created by

providing a valid pager id to the system call while a nil pager produces an inactive task

(details of page fault handling and pager thread creation are in Section 6.2).

Note that there is no separate task deletion system call as such. To kill a task, simply

create a new inactive task providing the id of the task to be killed to the l4_task_new

system call (as the dest parameter).

Creating an active task requires the caller to supply:

– a pager (the pager for the new task’s thread 0, as well as the default pager for all

further threads);

– a start address and an initial stack pointer;

– a maximum controlled priority. For a detailed description of all the scheduling

parameters, please refer to the Section 4.3.3.

Creating an inactive task (or deactivating an active one) requires the caller to specify

only a null pager (which identifies the new task as being inactive).

At the end of this chapter, an example of task creation with a simple pager is pre­

sented.

4.3 Thread Related System Calls

4.3.1 Thread Manipulation

As it was mentioned above, an active task is created with a full set (64) of threads but

with only one thread active (thread 0). A thread is activated by setting its instruction pointer

(IP) and stack pointer (SP) to valid values. Once active, a thread cannot be deactivated (other

than by deleting its task). To stop a thread from running it need to be blocked on an IPC,

which will never succeed.
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A thread’s instruction and stack pointers, along with its exception handler and

pager, are set by manipulating the thread’s register values through the l4_thread_ex_regs

system call. Providing the invalid value (­1) for any of these to this system call will retain the

old values. l4_thread_ex_regs also gives back the old values of the instruction pointer,

stack pointer, exception handler and pager. Thus, the call can also be used to check a thread’s

current context (by providing invalid values only). A thread’s pending IPCs are cancelled

and those in progress are aborted by this system call.

4.3.2 Release CPU

A thread can use the l4_thread_switch system call to voluntarily release the

CPU. The releasing thread can specify a thread to which to donate its remaining time slice.

If ready, the thread receiving the donation obtains the remaining time of the other thread on

top of its own time slice. Alternatively, if the receiving thread is not ready or if the releasing

thread does not specify a destination thread as part of the system call, the caller’s remaining

time slice is simply forfeited and normal scheduling takes place immediately.

4.3.3 Thread Scheduling

Thread scheduling in L4Ka is controlled by three parameters: time slice length, thread

priority and maximum controlled priority (MCP).

Time Slice Length

Each L4Ka thread has a time slice length associated with it. The time slice value can

range from 0 to MAXTIMESLICE and can vary between individual threads of a task. Each

thread is scheduled for the time slice length currently associated with it. When a thread’s

time quantum expires, the scheduler selects the next runnable thread as described in the

following section.

A time slice length of zero is valid. A thread with zero time slice is taken out of the

ready queue and therefore never scheduled (until it is given a non­zero time slice length).

Note that a thread’s time slice length is in no way determined by its priority. It

is valid for threads of the same priority to have different time slice lengths. A thread ini­

tially gets the same time slice length as its parent and that value can only be changed via a

l4_thread_schedule system call.
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255 254 0 ...... 

EMPTY 

Figure 4.1: Example Ready Queue

Priority

The kernel defines 256 levels of priority in the range [255..0] with 255 being the

highest priority and 0 the lowest. L4Ka’s internal scheduler uses multiple­level round­robin

queues such that there is a queue (possibly empty) associated with each priority level. All

the queues taken together form the kernel’s ready queue. Figure 4.1 shows an example of a

ready queue in L4Ka. Each circle represents a thread in a particular round­robin queue.

Each thread has an associated priority at any given time. The priority determines

which round­robin queue the thread belongs to in the kernel ready queue. Changing a

thread’s priority (via l4_thread_schedule ) will change the queue it belongs to.

L4Ka priorities are absolute. On each scheduling event, the scheduler will always

select the next thread to run from the head of the highest priority queue that is currently

non­empty. For example, in Figure 4.1, the scheduler would take the thread at the head of

the queue associated with priority 254.

Maximum Controlled Priority (MCP)

Unlike the time slice length and priority, the MCP is not thread based but rather task

based. The MCP of a task is specified at creation time (see Section 4.2) and all threads in the

task will share this MCP value.

Maximum controlled priority was meant for task hierarchy to be fair and secure, but
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currently it is not used (see Section 6.5). So, if some task A creates another task B provid­

ing value of MCP, say MCPnew, to l4_thread_schedule system call following condition

would guarantee fairness:

BMCP = min(MCPnew, AMCP ) .

Another scenario: particular thread (of task A) tries to change scheduling parame­

ters of another thread (of task B). Right conditions on which invoker can change priority of

target thread to prionew:

AMCP ≥ BMCP ∧ AMCP ≥ prionew .

Scheduling Parameter Inheritance

When an L4Ka task is created (by calling l4_task_new ), only the MCP is specified

but neither the time slice length nor priority is given. Similarly, creating an L4Ka thread (by

calling l4_thread_ex_regs ) does not explicitly require any of the scheduling parameters

to be provided. Thus, there is implicit scheduling parameter inheritance rules defined for

new tasks and threads. All the scheduling parameters, which are not provided in system

calls are inherited from parent thread.

At boot time, σ0 pager (see Section 6.3) starts up all the programs.σ0 has maximum

values for all its scheduling parameters and also calls l4_task_new (to create the initial

servers) with the MCP parameter set to maximum. Hence, all initial servers will have max­

imum values for their MCP and thread priority. This behavior is sensible because initial

servers should form the OS and thus should be given maximum privileges.

4.4 Revoking Mappings

Mappings can be recalled by using the l4_fpage_unmap system call. The invoker

specifies a flex­page to be revoked from all address spaces into which the invoker mapped

directly or indirectly. The unmapping can be done partially (revert to read­only) or com­

pletely (pages no longer part of the other address spaces). As part of the unmapping, the

invoker can optionally elect to remove the pages from its own address space.

The l4_fpage_unmap system call takes two parameters:

a) flex­page defines flex­page to be unmapped. As with mapping and granting, the

flex­page specifies memory region;
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b) map mask determines how the unmap is performed by indicating:

1) the unmap operation — set flex­page to read­only (L4_FP_REMAP_PAGE)

or completely unmap flex­page (L4_FP_FLUSH_PAGE);

2) the unmap extent — apply the unmap operation to all other address spaces

in which the flex­page has been mapped but not the original flex­page

(L4_FP_OTHER_SPACES) or apply the unmap operation in every address

space including the original

(L4_FP_ALL_SPACES).

w map_mask 

0 1 31 

f 0 0 (29) 

2 30 

Figure 4.2: Format of the map mask

Note that the unmap operation and unmap extent are orthogonal and so both should

be specified (by combining the two attributes with a logical OR). Table 4.1 shows all the valid

values for map mask. Figure 4.2 illustrates format of the map mask and Table 4.2 explains

its fields. Listing 4.1 shows concrete values of map mask constants for x86 architecture.

Table 4.1: Fields of the map mask

Field Value Description

w 0 Flex­page will be partially unmapped. Already read/write mapped

parts will be set to read only. Read only mapped parts are not affected.

1 Flex­page will be completely unmapped.

f 0 Unmapping happens in all address spaces, into which pages of the

specified flex­page have been mapped directly or indirectly. The origi­

nal pages in the own task remain mapped.

1 Unmapping happens in all address spaces, into which pages of the

specified flex­page have been mapped directly or indirectly. Addition­

ally, also the original pages in the own task are unmapped (flushing).

43



 

Изм. Лист № докум. Подпись Дата

Лист

ДП.991137.ПЗ 

Table 4.2: Common map masks

map mask Description

L4 FP REMAPPAGE|
L4 FP OTHERSPACES

Map flex­page read­only in all other address spaces, in

which the flex­page has been mapped

L4 FP FLUSHPAGE|
L4 FP OTHERSPACES

Completely unmap the flex­page in all other address

spaces, in which the flex­page has been mapped

L4 FP REMAPPAGE|
L4 FP ALL SPACES

Map flex­page read­only in all address spaces

L4 FP FLUSHPAGE|
L4 FP ALL SPACES

Completely unmap the flex­page in all address spaces

Listing 4.1: Map masks from file apps/include/l4/x86/syscalls.h

#define L4_FP_REMAP_PAGE 0x00 /* Page is set to read only */

#define L4_FP_FLUSH_PAGE 0x02 /* Page is flushed completly */

#define L4_FP_OTHER_SPACES 0x00 /* Page is flushed in all other */

/* address spaces */

#define L4_FP_ALL_SPACES 0x80000000U

/* Page is flushed in own address */

/* space too */

4.5 C Interface

This section contains concise reference book of all the L4Ka system calls.

4.5.1 l4 myself

L4_INLINE l4_threadid_t

l4_myself( void );

The system call returns the UID of the current thread.

4.5.2 l4 fpage unmap

L4_INLINE void

l4_fpage_unmap(l4_fpage_t fpage,

dword_t map_mask);

The flex­page specified by fpage parameter is unmapped in all address spaces, into
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which the invoker mapped it directly or indirectly. Parameter map mask have effect accord­

ing to Table 4.2.

4.5.3 l4 thread switch

L4_INLINE void

l4_thread_switch(l4_threadid_t destination);

The invoking thread releases the processor so that another ready thread can be pro­

cessed.

If destination thread id is L4 NIL ID , processing switches to an undefined ready

thread, which is selected by the scheduler (it might be the invoking thread).

Otherwise if destination thread is ready, processing switches to this thread. If the des­

tination thread is not ready, the system call operates as described for destination = L4 NIL ID .

4.5.4 l4 thread ex regs

L4_INLINE void

l4_thread_ex_regs(l4_threadid_t destination,

dword_t EIP,

dword_t ESP,

l4_threadid_t *preempter,

l4_threadid_t *pager,

dword_t *old_eflags,

dword_t *old_EIP,

dword_t *old_ESP);

This function reads and writes some register values of the thread in the current task.

It also creates threads. Conceptually, creating a task includes creating all of its

threads. The kernel does neither allocate control blocks nor time slices etc. to them (except

thread 0, of course). Setting stack and instruction pointer of such a thread to valid values

then really generates the thread.

Note that this operation reads and writes the user­level registers (ESP, EIP and

EFLAGS). However, any IPC operation is cancelled or aborted. If the IPC is either waiting

to send a message or waiting to receive a message, i.e. a message transfer is not yet running,

IPC is cancelled (condition code is 0x40 or 0x50, see Section 3.6). If a message transfer is

currently running, IPC is aborted (condition code is 0xC0 or 0xD0).

ESP parameter defines new stack pointer for the thread. It must point into the user­

45



 

Изм. Лист № докум. Подпись Дата

Лист

ДП.991137.ПЗ 

accessible part of the address space. Providing invalid value 0xFFFFFFFF will not affect

stack pointer.

EIP parameter defines new instruction pointer for the thread. It must point into

the user­accessible part of the address space. Providing invalid value 0xFFFFFFFF will not

affect instruction pointer.

Preempter defines the internal preempter used by the thread (L4 NIL ID is a valid

id). Providing invalid value 0xFFFFFFFF will not modify the existing internal preempter

id. Internal preempter is returned via this preempter parameter. This parameter is not used

(see Section 6.5 for more details about preemption).

Pager defines the pager used by the thread. Providing invalid value 0xFFFFFFFF

will not modify the existing pager id, which is then returned via this pager parameter.

Parameters old ESP and old EIP returns old values of stack pointer and instruction

pointer of the thread correspondingly.

Parameter old eflags returns flags of the thread. For more details about these flags

refer to [11].

4.5.5 l4 thread schedule

L4_INLINE cpu_time_t

l4_thread_schedule(l4_threadid_t dest,

l4_sched_param_t param,

l4_threadid_t *ext_preempter,

l4_threadid_t *partner,

l4_sched_param_t *old_param);

Value of type cpu time t is returned by l4 thread schedule system call. This

type is a synonym for long long defined in apps/include/l4/x86/types.h . In this

case it has format presented in Figure 4.3. T is a CPU time (48­bit value) in microseconds,

which has been consumed by the dest thread.

T high (16) 

T low (32) 

~ (16) 

CPU time: 

0 15 16 31 

Figure 4.3: Format of the cpu time t

Parameter param defines schedule parameter word (priority and time slice length)

for the dest thread in format described in Section 3.7. If the invalid value is provided,
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scheduling parameters are not modified. Old schedule parameter word is returned via

old param parameter.

Parameter ext preemter defines the external preempter for the destination thread

(L4 NIL ID is a valid id). Providing invalid value 0xFFFFFFFF will not change the cur­

rent external preempter id. External preempter is returned via ext preempter parameter. See

Section 6.5 for more details about preemption.

Parameter partner is only valid, if the thread is receiving, sending or waiting for IPC.

Partner is then returns a partner of an active user­invoked IPC operation. An L4 INVALID ID

is returned if there is no specific partner, i.e. if the thread is in an open receive state.

4.5.6 l4 task new

L4_INLINE l4_taskid_t

l4_task_new(l4_taskid_t destination,

dword_t MCP,

dword_t ESP,

dword_t EIP,

l4_threadid_t pager);

This function deletes and/or creates a task (see Section 4.2). Deletion of a task means

that the address space of the task and all threads of the task disappear.

Tasks may be created as active or inactive. For an active task, a new address space

is created together with 64 threads. Thread 0 is started, the other ones wait for a creation by

l4 thread ex regs. An inactive task is empty. It occupies no resources, has no address

space and no threads. Communication with inactive tasks is not possible. Loosely speaking,

inactive tasks are not really existing, but represent only the right to create an active task.

Parameter pager determines whether new task is created as active (pager �= L4 NIL ID,

the specified pager is associated with thread 0) or as inactive (pager = L4 NIL ID, no thread 0

is created).

ESP parameter determines initial stack pointer for thread 0 if the new task is created

as an active one (it is ignored otherwise).

EIP parameter determines initial instruction pointer for thread 0 if the new task is

created as an active one (it is ignored otherwise).

MCP (maximum controlled priority) parameter defines the highest priority that can

be ruled by the new task acting as a scheduler. See Section 6.5 for more details.

Return value of this system call is of type l4 taskid t (which is synonym for
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l4 threadid t). The task creation is failed if this UID is L4 NIL ID. Otherwise, task cre­

ation succeeded and if the new task is already active, this returned UID would have a new

version number so that it differs from all task ids used earlier.

4.5.7 l4 ipc call

This is the basic system call for inter­process communication and synchronization.

It may be used for intra­ and inter­address­space communication. All communication is

synchronous and unbuffered: a message is transferred from the sender to the recipient if

and only if the recipient has invoked a corresponding IPC operation. The sender blocks

until this happens (or timeout expires).

IPC can be used to copy data as well as to map or grant flex­pages from the sender

to the recipient. For the description of messages, see Chapter 5.

Messages of up to three dwords can be transferred solely via the registers and are

thus specially optimized. If possible, short messages should therefore be reduced to 12­byte

messages.

A single l4_ipc_call combines an optional send operation with an optional re­

ceive operation. Whether it includes a send respectively a receive is determined by the actual

parameters. If the send or receive address is specified as nil (0xFFFFFFFF), the correspond­

ing operation is skipped.

No time is required for the transition between send and receive phase of one IPC

operation.

In contrast to other system calls, l4_ipc_call is declared in file apps/include/

l4/x86/ipc.h and has several prototypes:

– l4 ipc call ,

– l4 ipc reply and wait,

– l4 ipc send ,

– l4 ipc receive ,

– l4 ipc wait .

Note that all these functions returns the result status of IPC via the last input pa­

rameter (l4 msgdope t *result ).
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Prototype l4 ipc call

L4_INLINE int

l4_ipc_call(l4_threadid_t dest,

const void *snd_msg,

dword_t snd_dword0,

dword_t snd_dword1,

dword_t snd_dword2,

void *rcv_msg,

dword_t *rcv_dword0,

dword_t *rcv_dword1,

dword_t *rcv_dword2,

l4_timeout_t timeout,

l4_msgdope_t *result);

This prototype is usually used for blocking. snd msg is sent to dest and the invoker

waits for a reply from dest thread. Messages from other sources are not accepted. Note that

since the send/receive transition needs no time, the destination can reply with snd timeout =

0. This operation can also be used for a server with one dedicated client. It sends the reply

to the client and waits for the client’s next order.

Prototype l4 reply and wait (Send to & Receive operation)

L4_INLINE int

l4_ipc_reply_and_wait(l4_threadid_t dest,

const void *snd_msg,

dword_t snd_dword0,

dword_t snd_dword1,

dword_t snd_dword2,

l4_threadid_t *src,

void *rcv_msg,

dword_t *rcv_dword0,

dword_t *rcv_dword1,

dword_t *rcv_dword2,

l4_timeout_t timeout,

l4_msgdope_t *result);

snd msg is sent to dest and the invoker waits for a reply from any source. This is

the standard server operation: it sends a reply to the actual client and waits for the next

order, which may come from a different client. For example, the main pager σ0 uses this

kind of l4 ipc call prototype to serve requests (see Section 6.3). Thread id of the client is

returned via src parameter.
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Prototype l4 ipc send (Send operation)

L4_INLINE int

l4_ipc_send(l4_threadid_t dest,

const void *snd_msg,

dword_t snd_dword0,

dword_t snd_dword1,

dword_t snd_dword2,

l4_timeout_t timeout,

l4_msgdope_t *result);

snd msg is sent to dest. There is no receive phase included. The invoker continues

working after send the message is received on the opposite side or timeout expires. This

prototype is a wrapper for generic l4 ipc call with *rcv msg parameter set to “nil” value

(L4 IPC NIL DESCRIPTOR).

Prototype l4 ipc receive (Receive From operation)

L4_INLINE int

l4_ipc_receive(l4_threadid_t src,

void *rcv_msg,

dword_t *rcv_dword0,

dword_t *rcv_dword1,

dword_t *rcv_dword2,

l4_timeout_t timeout,

l4_msgdope_t *result);

This operation includes no send phase. The invoker waits for a message from src.

Messages from other sources are not accepted.

A hardware interrupt might be specified as source. Then provided UID must be set

according to Figure 3.1. In order to associate interrupt with currently running thread zero

rcv timeout value must be specified. After invoking this system call current thread is:

1) detached from its currently associated interrupt (if any);

2) associated with the specified interrupt provided that this one is free, i.e. not

associated with another thread.

If the association succeeds, the condition code is 0x20 (receive timeout) and no inter­

rupt is received. If an interrupt from the currently associated interrupt was pending, this one

is delivered together with condition code of 0x00 (ok, see Table 3.3 for condition code values)

and interrupt association is not modified. If the requested new interrupt is already associ­
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ated to another thread or is not existing, condition code 0x10 is delivered and the interrupt

association is not modified.

Getting rid of an associated interrupt without associating a new one is done by

issuing a receive from NIL thread (0x00 ) with zero rcv timeout.

In order to receive interrupt thread should call l4 ipc receive again. Note that

interrupt messages come only from the interrupt, which is currently associated with this

thread. The src parameter is only evaluated if rcv timeout is zero.

Prototype l4 ipc wait (Open Receive operation)

L4_INLINE int

l4_ipc_wait(l4_threadid_t *src,

void *rcv_msg,

dword_t *rcv_dword0,

dword_t *rcv_dword1,

dword_t *rcv_dword2,

l4_timeout_t timeout,

l4_msgdope_t *result);

This operation includes no send phase. The invoker waits for a message from any

source (including a hardware interrupt).

Sleep operation

Sleep operation is a special kind of receive operation. It is presented in Listing 4.2.

Since L4 NIL ID is specified as source, no message can arrive and the IPC will be terminated

after the time specified by the rcv timeout parameter is elapsed. Thus, function l4 sleep

blocks thread for the time in µs given as input parameter.

Listing 4.2: Sleep operation

L4_INLINE

void l4_sleep(dword_t us)

{

dword_t dummy;

l4_msgdope_t result;

l4_ipc_receive(L4_NIL_ID,

0,

&dummy,

&dummy,

&dummy,

us ? (l4_timeout_t) {timeout : { best_exp(us), best_exp(us),
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0, 0, best_mant(us), best_mant(us)}} : L4_IPC_NEVER,

&result);

}

4.6 Examples

All presented examples and tests must be run as the root task. They use urriy.h

file, which contains some useful constants and data types and can also be included if neces­

sary. All examples use functions of kernel debugger kdebug:

– void outchar (char ) — outputs a single ASCII character (given as a parameter)

on the screen;

– void outstring (char *) — outputs null­terminated ASCII string (given as a pa­

rameter) on the screen;

– void outhex32 (int ) — outputs integer value (given as a parameter) on the screen

in hexadecimal number system;

– void outdec (int ) — outputs integer value (given as a parameter) on the screen

in decimal number system;

– char kd inchar () — kernel debugger kdebug stops the running of L4KA OS and

inputs one character (returned by function);

– enter kdebug (text) — kernel debugger kdebug stops the running of L4KA OS

and outputs given text on the screen. User gets control over the kernel debugger

kdebug and can use dump memory, trace IPC and page fault, etc.

These functions can be found in file “kdebug.h ”. In order to use them kernel must

be compiled with kernel debugger kdebug support. For more detailed information about

kernel debugger kdebug for Hazelnut refer to [12].

4.6.1 Thread Creation

Root task creates a new thread using l4_thread_ex_regs system call. Another

way is to use wrapper function create_thread from “helpers.h ”.

Listing 4.3: Thread Creation

/*************************************************************

Thread creation.

Root task creates a thread, which then outputs its id on the screen.
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*************************************************************/

#include ” u r r i y . h”

void foo ( void);

#define FOOSTACKSIZE 1024

l4_threadid_t foo_tid; //thread id of target thread

l4_threadid_t main_tid; //thread id of the root_task

dword_t foostack[FOOSTACKSIZE]; //stack

dword_t dummy;

//______________FOO

void foo()

{

//outstring(char *) ­­ outputs string on the screen

outstring( ”\n foo : s u c c e s s f u l l y s t a r t e d with thread id : ”);

//outhex32(int ) ­­ outputs integer value on the screen in hex

outhex32(l4_myself().raw);

while (1){l4_sleep(1000000);outchar( ’+ ’ );}

}

//_____________________MAIN ­­ root task

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

//thread id of the root_task

main_tid = l4_myself();

//thread id of the pager of the root task

l4_threadid_t my_pager = get_current_pager(l4_myself());

foo_tid=main_tid;

foo_tid.id.thread = 8;

// foo thread creation using system call l4_thread_ex_regs

l4_thread_ex_regs(

foo_tid, //target thread id

(dword_t) foo, //IP

(dword_t) &foostack[FOOSTACKSIZE ­ 1], //SP

&my_pager, //preempter thread id of target thread

&my_pager, //pager thread id of target handler

&dummy, //old flags ­­ don’t care

&dummy, //old IP ­­ don’t care

&dummy); //old SP ­­ don’t care

outstring( ”\n r o o t t a s k : new thread i s crea ted with thread id ”);

outhex32(foo_tid.raw);
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while (1){l4_sleep(1000000);outchar( ’− ’ );}

}

4.6.2 Task Creation

Creation of task is rather complicated and requires from user­level programmer

knowledge of page fault handling (see Section 6.2) and principles of inter­process commu­

nication (see next chapter). In this example pager implements very simple policy — just

mapping requested page to the faulter without any checks. On every request, pager asks

higher­level pager (pager of itself) for this page. On success, pager delivers page to faulter

via short IPC message.

Listing 4.4: Task Creation

/*********************************************************************

* File path: root_task/main.c

* Description: task creation

* new task is created by the root task

* and notifies its start by writing on

* the screen.

* pager: on page fault asks pager of itself for

* this page, then delivers it via short IPC message

* with mapping to the faulter.

* Works only with 4k pages.

********************************************************************/

#include ” u r r i y . h”

l4_threadid_t main_tid;

l4_threadid_t subtask_tid;

#define PAGERSTACKSIZE 4096

dword_t pager_stack[PAGERSTACKSIZE];

#define SUBTASKSTACKSIZE 4096

dword_t subtask_stack[SUBTASKSTACKSIZE];

void pager(void );

void subtask( void );

l4_threadid_t pager_tid;

l4_threadid_t dummy_tid;

dword_t dummy;

//________________________________SUBTASK

void subtask()
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{

outstring( ”\n New task i s s t a r t e d with id : ”);

outhex32(l4_myself().raw);

//kernel debugger input character

kd_inchar();

outstring( ” . . . nothing to do , e x i t i n g . ”);

while (1) {l4_sleep(1000000);outchar( ’ . ’ );}

}

//________________________________PAGER

void pager()

{

l4_threadid_t client;

l4_msgdope_t dope;

dword_t dw0, dw1, dw2;

dword_t map=2;

dword_t fault_addr;

dword_t addr;

l4_threadid_t s0 = L4_SIGMA0_ID;

l4_threadid_t h_pager = get_current_pager(l4_myself());

while (4)

{

outstring( ”\n pager : wait ing IPC message from kernel ”);

l4_ipc_wait(&client, 0, &dw0, &dw1, &dw2, L4_IPC_NEVER, &dope);

while(5)

{

//fault address without mask

fault_addr = (dw0 & (˜(dword_t) 3));

//let pager notify higher level pager that writing access is required

dw0 = fault_addr | 2;

outstring( ”\n pager : handling a page f a u l t a t address ”);

outhex32(fault_addr);

//asking page from higher level pager

l4_ipc_call(h_pager,

L4_IPC_SHORT_MSG,

dw0,

dw1,

dw2,

//accepting page in whole address space

(void *) l4_fpage(0, L4_WHOLE_ADDRESS_SPACE, 1, 0).raw,

&addr, //address to be returned in the first dword
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&dummy,

&dummy,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r while asking f o r page ”);

break ;

}

outstring( ”\n pager : memory page i s given by higher l e v e l pager . address ”);

outhex32(addr);

//first dword contains flex­page describing the memory region

dw0 &= L4_PAGEMASK;

//second dword contains hot­spot which must be specified correct

dw1 = dw0 | (L4_LOG2_PAGESIZE << 2) | (L4_IPC_SHORT_MAPMSG);

//send IPC message, which contains a mapping of desired page

// and then wait for the next page fault

l4_ipc_reply_and_wait(client,

(void *) L4_IPC_SHORT_MAPMSG,

dw0,

dw1,

dw2,

&client,

L4_IPC_SHORT_MSG,

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r reply and wait ”);

break ;

}

}

}

}

//_____________________MAIN

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

l4_threadid_t m_pager=get_current_pager(l4_myself());

l4_threadid_t s0 = L4_SIGMA0_ID;
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main_tid = l4_myself();

pager_tid = main_tid;

pager_tid.id.thread = 1;

//creating a pager thread

l4_thread_ex_regs

(pager_tid,

(dword_t) pager,

(dword_t)&pager_stack[PAGERSTACKSIZE ­ 1],

&m_pager,

&m_pager,

&dummy,

&dummy,

&dummy);

enter_kdebug( ”\n main : pager i s crea ted ”);

//creating a new task

subtask_tid.raw = main_tid.raw;

subtask_tid.id.task = 10;

subtask_tid.id.thread = 0;

//system call will return a thread id of new task

subtask_tid = l4_task_new

(subtask_tid, //thread id of destination task

255, //MCP value to maximum possible priority

(dword_t) &subtask_stack[SUBTASKSTACKSIZE ­ 1], //SP

(dword_t) subtask, //IP

pager_tid //thread id of pager

);

outstring( ”\n main : subtask w i l l be crea ted with id : ”);

outhex32(subtask_tid.raw);

outchar( ’\n ’ );

outstring( ”\n main : subtask IP i s ”);

outhex32((dword_t) subtask);

outstring( ”\n main : subtask SP i s ”);

outhex32((dword_t) &subtask_stack[SUBTASKSTACKSIZE ­ 1]);

enter_kdebug( ”\n main : subtask i s crea ted ”);

while(1){l4_sleep(1000000);outchar( ’− ’ );}

}
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4.6.3 Thread Scheduling

This example utilizes scheduling mechanism using both the system call described

above (l4_thread_schedule ) and a wrapper function l4_set_prio from “helpers.h ”.

Listing 4.5: Thread Scheduling

/*********************************************************************

* File path: root_task/main.c

* Description: scheduling

* 0. root task has priority of 255, starts pager with

* priority of 255 and subtask with MCP value = 127

* and sets prio of subtask to 127

* 1. subtask tries to do something but is never

* scheduled if root task not idle

* 2. root task decreases prio of itself to 127 and

* now runs concurrently with subtask

* 3. subtask tries to increase prio of itself to 255

* and succeeds

* 4. subtask then decreases prio to 127 and again runs

* concurrently with the root task

* 5. subtask tries to decrease prio of the root task

* to 1 and succeeds.

********************************************************************/

#include ” u r r i y . h”

l4_threadid_t main_tid;

l4_threadid_t subtask_tid;

#define PAGERSTACKSIZE 4096

dword_t pager_stack[PAGERSTACKSIZE];

#define SUBTASKSTACKSIZE 4096

dword_t subtask_stack[SUBTASKSTACKSIZE];

void pager(void );

void subtask( void );

l4_threadid_t pager_tid;

l4_threadid_t dummy_tid;

dword_t dummy;

//_____________________MAIN

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

l4_threadid_t my_pager=get_current_pager(l4_myself());

l4_threadid_t s0 = L4_SIGMA0_ID;
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main_tid = l4_myself();

pager_tid = main_tid;

pager_tid.id.thread = 1;

l4_sched_param_t param, old_param;

outstring( ” root task : s t a r t e d with prio = 2 5 5 and id = ”);

outhex32(main_tid.raw);

//preparations for scheduling

param.sp.small = 0;

param.sp.zero = 4;

param.sp.time_exp = 5;

param.sp.time_man = 1;

param.sp.prio = 255;

dummy_tid = L4_INVALID_ID;

//scheduling using system call

l4_thread_schedule(

main_tid,

param,

&dummy_tid,

&dummy_tid,

(l4_sched_param_t *) &old_param

);

//creating a pager thread

l4_thread_ex_regs(

pager_tid,

(dword_t) pager,

(dword_t)&pager_stack[PAGERSTACKSIZE ­ 1],

&my_pager,

&my_pager,

&dummy,

&dummy,

&dummy);

//preparations for scheduling

param.sp.small = 0;

param.sp.zero = 4;

param.sp.time_exp = 5;

param.sp.time_man = 1;

param.sp.prio = 255;

dummy_tid = L4_INVALID_ID;

//scheduling using system call

l4_thread_schedule(

pager_tid,

param,

&dummy_tid,

&dummy_tid,

(l4_sched_param_t *) &old_param
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);

enter_kdebug( ”\n main : pager i s crea ted with prio = 2 5 5 ”);

//creating a new task

subtask_tid.raw = main_tid.raw;

subtask_tid.id.task = 10;

subtask_tid.id.thread = 0;

//system call will return a thread id of new task

subtask_tid = l4_task_new(

subtask_tid, //thread id of destination task

127, //MCP value to maximum possible priority

(dword_t) &subtask_stack[SUBTASKSTACKSIZE ­ 1], //SP

(dword_t) subtask, //IP

pager_tid //thread id of pager

);

//preparations for scheduling

param.sp.small = 0;

param.sp.zero = 4;

param.sp.time_exp = 5;

param.sp.time_man = 1;

param.sp.prio = 127;

dummy_tid = L4_INVALID_ID;

//scheduling using system call

l4_thread_schedule(

subtask_tid,

param,

&dummy_tid,

&dummy_tid,

(l4_sched_param_t *) &old_param

);

outstring( ”\n main : subtask i s crea ted with prio = 1 2 7 and id = ”);

outhex32(subtask_tid.raw);

outstring( ”\n root task : 5 0 i t e r a t i o n s ”);

int k;

for (int i=0; i<50; i++)

{

for (int j=0;j<1000000;j++) k=j­i;

outchar( ’+ ’ );

};

//scheduling using wrapper from <helpers.h>

l4_set_prio(main_tid, 127);
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outstring( ”\n root task : subtask i s rescheduled , pr io = 1 2 7 ”);

outstring( ”\n root task : everything i s done . ”);

while(1){

for (int j=0;j<1000000;j++) k=j+j;

outchar( ’ , ’ );

}

}

//________________________________SUBTASK

void subtask()

{

outstring( ”\n subtask : . . . i s s t a r t e d with id : ”);

outhex32(l4_myself().raw);

outstring( ”\n subtask : 7 0 minuses ”);

int k;

for (int i=0; i<70; i++)

{

for (int j=0;j<1000000;j++) k=j­i;

outchar( ’− ’ );

};

enter_kdebug( ”\n subtask : t r y i n g to reschedule to prio = 2 5 5 ”);

//scheduling using wrapper from <helpers.h>

l4_set_prio(subtask_tid, 255);

outstring( ”\n subtask : rescheduled ”);

for (int i=0; i<150; i++)

{

for (int j=0;j<1000000;j++) k=j­i;

outchar( ’= ’ );

};

enter_kdebug( ” \n subtask : w i l l run concurrent ly with r o o t t a s k ”);

//scheduling using wrapper from <helpers.h>

l4_set_prio(subtask_tid, 127);

for (int i=0; i<150; i++)

{

for (int j=0;j<1000000;j++) k=j­i;

outchar( ’= ’ );

};

enter_kdebug( ” \n subtask : w i l l t r y to decrease prio of the r o o t t a s k ”);
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//scheduling using wrapper from <helpers.h>

l4_set_prio(main_tid, 1);

while (1)

{

for (int j=0;j<1000000;j++) k=j+j;

outchar( ’ . ’ );

}

}

//________________________________PAGER

void pager()

{

l4_threadid_t client;

l4_msgdope_t dope;

dword_t dw0, dw1, dw2;

dword_t map=2;

dword_t fault_addr;

dword_t addr;

l4_threadid_t s0 = L4_SIGMA0_ID;

l4_threadid_t h_pager = get_current_pager(l4_myself());

while (4)

{

outstring( ”\n pager : wait ing IPC message from kernel ”);

l4_ipc_wait(&client, 0, &dw0, &dw1, &dw2, L4_IPC_NEVER, &dope);

while(5)

{

//fault address without mask

fault_addr = (dw0 & (˜(dword_t) 3));

//let pager notify higher level pager that writing access is required

dw0 = fault_addr | 2;

outstring( ”\n pager : handling a page f a u l t a t address ”);

outhex32(fault_addr);

//asking page from higher level pager

l4_ipc_call(h_pager,

L4_IPC_SHORT_MSG,

dw0,

dw1,

dw2,

//accepting page in whole address space

(void *) l4_fpage(0, L4_WHOLE_ADDRESS_SPACE, 1, 0).raw,

&addr, //address to be returned in the first dword

&dummy,
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&dummy,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r while asking f o r page ”);

break ;

}

outstring( ”\n pager : memory page i s given by higher l e v e l pager . address ”);

outhex32(addr);

//first dword contains flex­page describing the memory region

dw0 &= L4_PAGEMASK;

//second dword contains hot­spot which must be specified correct

dw1 = dw0 | (L4_LOG2_PAGESIZE << 2) | (L4_IPC_SHORT_MAPMSG);

//send IPC message, which contains a mapping of desired page

// and then wait for the next page fault

l4_ipc_reply_and_wait(client,

(void *) L4_IPC_SHORT_MAPMSG,

dw0,

dw1,

dw2,

&client,

L4_IPC_SHORT_MSG,

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r reply and wait ”);

break ;

}

}

}

}

Urriy.h

File urriy.h is used by all the examples. It contains some useful constants.
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Listing 4.6: urriy.h

#include <l4/l4.h>

#include <l4io.h>

#include <l4/helpers.h>

#include ” ipc2 . h”

#define L4_IPC_NIL_DESCRIPTOR ((dword_t) ­1)

#define L4_IPC_SHORT_MSG ((dword_t) 0)

#define L4_IPC_SHORT_MAPMSG ((dword_t) 2)

#define L4_IPC_SHORT_DECEITING ((dword_t) 1)

#define L4_IPC_SHORT_RECEIVE_FROM ((dword_t) 0)

#define L4_IPC_SHORT_OPEN_RECEIVE ((dword_t) 1)

#define L4_IPC_RECEIVE_MAPMSG(address, size) \

((dword_t)( ((address) & ˜((dword_t)((1<<size)­1))) \

| ((size) << 2) | 0x00000002) )

typedef struct header

{

l4_fpage_t rcv_fpage;

l4_msgdope_t size_dope;

l4_msgdope_t snd_dope;

} header_t;

//______________WRITING into defined memory page of size 2ˆsize

void writing(dword_t startaddr, int size, int debug, char fillchar)

{

char *ptr;

ptr =( char *) startaddr;

char c0=( char ) startaddr;

char c1=( char ) (startaddr>>8);

char c2=( char ) (startaddr>>16);

char c3=( char ) (startaddr>>24);

int i;

if (debug) enter_kdebug( ”\n j u s t before wri t ing to memory ”);

if (fillchar==0)

{

for (i=0; i<(1 << size); i++)

{

switch (i)

{

case 0: *ptr=( char ) c0; break;

case 1: *ptr=( char ) c1; break;

case 2: *ptr=( char ) c2; break;

case 3: *ptr=( char ) c3; break;

default :
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*ptr=(char )i;

}

ptr++;

}

}

else

{

for (i=0; i<(1 << size); i++)

{

*ptr= fillchar;

ptr++;

}

}

if (debug==2) enter_kdebug( ”\n j u s t a f t e r wri t ing to memory ”);

}

//_________________FREEING simple unmap call

void freeing(dword_t addr, int size, int grant, int write, dword_t mask)

{

l4_fpage_t fp;

fp.fp.grant=grant;

fp.fp.write=write;

fp.fp.size=size;

fp.fp.zero=0;

fp.fp.page=addr>> 12; //we need only 20 bits of address

l4_fpage_unmap(fp, mask);

}

Ipc2.h

File ipc2.h is used by several examples. It contains l4_ipc_call2 function —

similar to initial l4_ipc_call , but without any masks.

Listing 4.7: ipc2.h

#ifndef __L4_X86_IPC2_H__

#define __L4_X86_IPC2_H__

#if !defined(CONFIG_L4_SYSENTEREXIT)

#define IPC_SYSENTER ” i n t $0x30 \n\ t ”

#else

#define OLD_IPC_SYSENTER \

”push %%ecx \n\ t ” \
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”push %%ebp \n\ t ” \

”push $0x23 /∗ l i n e a r s p a c e e x e c ∗/ \n\ t ” \

”push $0f /∗ o f f s e t re t addr ∗/ \n\ t ” \

”mov %%esp,%%ecx \n\ t ” \

” s y s e n t e r /∗ = db 0 x0F , 0 x34 ∗/ \n\ t ” \

”mov %%ebp,%%edx \n\ t ” \

” 0 : \n\ t ”

#define IPC_SYSENTER \

”push %%ecx \n\ t ” \

”push %%ebp \n\ t ” \

”push $0x1b /∗ l i n e a r s p a c e e x e c ∗/ \n\ t ” \

”push $0f /∗ o f f s e t re t addr ∗/ \n\ t ” \

”mov %%esp,%%ecx \n\ t ” \

” s y s e n t e r /∗ = db 0 x0F , 0 x34 ∗/ \n\ t ” \

”mov %%ebp,%%edx \n\ t ” \

” 0 : \n\ t ”

#endif

/*

* Internal defines used to build IPC parameters for the L4 kernel

*/

#define L4_IPC_NIL_DESCRIPTOR (­1)

#define L4_IPC_DECEIT 1

#define L4_IPC_OPEN_IPC 1

/*

* Prototypes

*/

L4_INLINE int

l4_ipc_call2(l4_threadid_t dest,

const void *snd_msg,

dword_t snd_dword0, dword_t snd_dword1, dword_t snd_dword2,

void *rcv_msg,

dword_t *rcv_dword0, dword_t *rcv_dword1, dword_t *rcv_dword2,

l4_timeout_t timeout, l4_msgdope_t *result);

/*

* Implementation

*/

#define SCRATCH_MEMORY 1

#ifdef __pic__

#error no version X bindings with __pic__ enabled

#else /* __pic__ */
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L4_INLINE int

l4_ipc_call2(l4_threadid_t dest,

const void *snd_msg, dword_t snd_dword0, dword_t snd_dword1,

dword_t snd_dword2, void *rcv_msg, dword_t *rcv_dword0,

dword_t *rcv_dword1, dword_t *rcv_dword2,

l4_timeout_t timeout, l4_msgdope_t *result)

{

dword_t dw[3] = {snd_dword0, snd_dword1, snd_dword2};

asm volatile (

” pushl %%ebp \n\ t ” /* save ebp, no memory

references ("m") after

this point */

”movl %%edi , %%ebp \n\ t ”

”movl 4(%%edx ) , %%ebx \n\ t ”

”movl 8(%%edx ) , %% edi \n\ t ”

”movl (%%edx ) , %%edx \n\ t ”

IPC_SYSENTER

”popl %%ebp \n\ t ” /* restore ebp, no memory

references ("m") before

this point */

:

”=a” (*result), /* EAX, 0 */

”=d” (*rcv_dword0), /* EDX, 1 */

”=b” (*rcv_dword1), /* EBX, 2 */

”=D” (*rcv_dword2) /* EDI, 3 */

:

” c ” (timeout), /* ECX, 4 */

/*Urriy*/

// "D" (((int)rcv_msg) & (˜L4_IPC_OPEN_IPC)),/* EDI, 5, rcv msg ­> ebp */

”D” (( int )rcv_msg),

”S” (dest), /* ESI, 6, dest */

/*Urriy*/

// "0" (((int)snd_msg) & (˜L4_IPC_DECEIT)),/* EAX, 0 */

”0” (( int )snd_msg),

”1” (&dw[0]) /* EDX, 1, */

#ifdef SCRATCH_MEMORY

: ”memory”

#endif /* SCRATCH_MEMORY */

);

return L4_IPC_ERROR(*result);

}

#endif /* __pic__ */

#endif /* __L4_X86_IPC_H__ */
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5 L4Ka IPC

5.1 Why Inter­Process Communication?

There are many scenarios, which serves as examples of this necessity. Assume for

instance client­server model. Server, say Web­server, must provide service (web­page) to

many clients. Client makes requests in arbitrary order at any time. In Linux OS solution

would be to create a main process of a web­server and then make a copy of it using fork()

for every new client. Then, looking at its PID (process ID) process can distinguish itself from

a parent process and perform actions to provide service for a given client.

A Web­server application uses some amount of memory to operate and needs to

communicate with other applications. For latter can stand some Database Engine, inter­

preter (say, Perl or CGI scripts interpreter) and some others. Former will require copy op­

eration of memory of a parent process (in case of Linux OS). Assume that a child process

of a Web­server needs to perform a SQL request to Database. Then using Perl interpreter

construct a Web­page to be returned to a client.

Thus, it is necessary to organize efficient communication between all these applica­

tions. Efficient in terms of waiting time of a client to be served (to get the requested page).

Using L4Ka IPC on the kernel level all these operations can be done very efficient.

First, web­server can be created as one task. Main thread of it wakes up other threads of a

task on every new request. Parameters of this request can be sent by task in IPC message.

Communication with other tasks can be done using memory mappings — thus copy

of memory does not takes place. Since all IPC operations atomic and unbuffered these

scheme is rather efficient. At the time of writing L4Ka IPC claims to be the most efficient

one [13].

Moreover, some QoS policies can be applied on top: if some client must be served

move quickly (or even real­time), change of priorities and time slices using system call

l4_thread_schedule affect the quality of service. The DROPS project (The Dresden Real­
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Time Operating System Project, [14]) aims at supporting applications with Quality of Service

requirements. L4Linux is used for servicing standard Linux applications. Specific real­time

applications are served by a set of real­time components running on top of L4.

5.2 IPC Overview

Message passing is the basic IPC mechanism in L4Ka. It allows L4Ka threads to

communicate via messages. All L4Ka IPC is synchronous and unbuffered. Unbuffered IPC

reduces the amount of copying involved.

Synchronous IPC requires an agreement between both the sender and the receiver.

The main implications of this agreement are that the receiver is expecting an IPC and pro­

vides the necessary buffers. If either the sender or receiver is not ready, then the other party

must wait.

L4Ka IPC operation can have a send and a receive phase. L4Ka IPC uses a single

system call instead of many. There are some advantages of this approach:

– Combined send and receive The implementation of the individual send and re­

ceive is very similar to the combined send and receive. It was meant to reduce

cache footprint of the code and make applications more likely to be in cache.

– Open receive It is special IPC primitive for servers to communicate with a thread

unknown a priori. IPC primitive Send to & Receive is atomic operation for opti­

mization reasons. Typically used by servers to reply and wait for the next request

(from anyone).

– Atomicity Other threads are blocked during IPC until it is their turn.

– Flexibility Many operations (IPC primitives), different message types and other

features are enclosed in same IPC call.

5.3 Message Types

Data can be transferred in three ways using L4Ka IPC:

1) By­register In­line by­value data. A limited amount of such data is passed di­

rectly in registers.

2) By­value Arbitrary out­of­line buffers which are copied to the receiver. Transfer

is done by strings and mwords.
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3) By­reference Messages that map (grant) pages from sender to receiver. Con­

tiguous regions of address space is called flex­page (see definition in section 3.4).

Virtual memory can be mapped or granted (see definitions on page 16).

Messages via registers are called short, rather than by­value which are long. Map­

pings can be sent either using short or long IPC message.

5.4 Sending/Receiving IPC Messages

Before considering how to send or receive, it is necessary to decide what form of data

is to be sent. Small amount of data (not more than 12 bytes) can be transferred by­register.

Otherwise (if data does not fit into three dwords), a decision must be made on

whether to send data in­line (in mwords ) or as strings. Both have the same effect of making

a copy of the sender’s data available to the receiver. The difference lies in efficiency and

appropriateness.

In­line data need to be copied to a buffer first and must be aligned to dword size.

Thus, the in­line option is best for small amounts of data and is useful when some kind

of handshake is required (to define the protocol and parameters of further transfer: size of

buffers, etc.).

Strings avoid extra copying and can be located anywhere in memory (no alignment

necessary) but require buffers to be specified (via string dopes). Buffer specifications must

also be consistent on both the sender and the receiver end. In particular, the receiver must

specify and expect to receive the (at least) the same number and size strings that the sender

sends.

When it is necessary to send even more data (than possible using strings), memory

granting via flex­pages should be used (by­reference method). In order to use some memory

regions simultaneously by several tasks memory mapping solves the problem.

As it was mentioned above, the generic system call l4_ipc_call provides a num­

ber of IPC operations. They are differentiated in the following ways:

– Send operation — send data to another thread;

– Receive from operation — receive data from particular thread;

– Send to & Receive operation — combined send and receive. Send to particular

thread, receive from arbitrary;

– Open Receive — receiving from arbitrary thread.
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In order to send or receive a message, certain parameters must be provided. Namely

– dest/src thread id — identifier of message destination/source thread respectively

(format of the unique ids is described in section 3.3);

– snd msg/rcv msg — descriptor for send/receive part of IPC respectively (format of

a message descriptor is described in section 5.5.1);

– In­line by­value data to be sent. Three dwords can be sent on x86 architecture and

eight on MIPS R4k. These data can define mappings via flex­page descriptors

(format of the flex­page descriptor is described in section 5.5.5);

– Pointers on dwords ptr_t for in­line by­value data to be received;

– timeout — timeout specification. It is used to ensure that a thread need not be

blocked indefinitely (format of the timeout structure is described in section 3.5);

– Pointer to l4_msgdope_t structure. Variable serves to store the result status of

the IPC operation (format of the result status of IPC is described in section 3.6).

5.5 L4Ka IPC Messages

5.5.1 Message Descriptors

A message descriptor is a pointer to the start of a message buffer or indication that

the IPC is purely register based. There are two types of message descriptors: one for sending

and one for receiving IPC.

The format of the send message descriptor is presented in Figure 5.1. A non­zero mes­

sage descriptor address (snd msg) is interpreted as the start address of the sender’s message

buffer. A zero value indicates a purely register based IPC. Setting the m­bit indicates that

the IPC includes mappings (i.e. flex­pages are present followed possibly by by­value data).

A zero value for the m­bit indicates that the message contains only by­value data and no

flex­pages.

Send 
message 
descriptor 

~ m snd msg/4 (30) 

0 1 2 31 

Figure 5.1: Format of the Send Message Descriptor

The format of the receive message descriptor is very similar and presented in Figure 5.2.
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If the m­bit is not set, the message descriptor address (rcv msg) is interpreted as the start

address of the receiver’s message buffer, which may contain a receive flex­page, indicating

the caller’s willingness to receive mappings or grants. Setting the m­bit indicates that the

caller is willing to accept flex­page mappings but no long message, and has supplied the

receive flex­page directly as the rcv msg parameter (there is no message buffer in this case).

Setting the o­bit will allow a receive from any sender (Open Receive) while a zero value for the

o­bit allows receiving only from the specified sender (Receive from). Note that the message

descriptor addresses have had their least significant two bits removed. These two bits are

not needed as the message buffer must be word aligned.

Receive 
message 
descriptor 

o m rcv msg/4 (30) 

0 31 1 2 

Figure 5.2: Format of the Receive Message Descriptor

More detailed information about all types of message descriptors is presented in

Table 5.1. Most frequently used descriptors can be found in file “urriy.h ” and are shown

in Listing 5.1.

Listing 5.1: Widely used message descriptors in “urriy.h”

#define L4_IPC_NIL_DESCRIPTOR (( void *) ­1)

#define L4_IPC_SHORT_MSG ((void *)0)

#define L4_IPC_SHORT_MAPMSG ((void *)2)

#define L4_IPC_SHORT_DECEITING (( void *)1)

#define L4_IPC_SHORT_RECEIVE_FROM ((void *)0)

#define L4_IPC_SHORT_OPEN_RECEIVE ((void *)1)

#define L4_IPC_RECEIVE_MAPMSG(address, size) \

(( void *) (dword_t)( ((address) & ˜((dword_t)((1<<size)­1))) \

| ((size) << 2) | 0x00000002)

Table 5.1: Message Descriptors

Type Description

SEND MESSAGE DESCRIPTOR

“nil”
0xFFFFFFFF  (32) 

0 31 

IPC does not include a send operation.

continued on the next page
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Table 5.1: (continued)

Type Description

“mem”
~ m snd msg/4  (30) 

0 1 31 2 

IPC includes sending a message to the destination specified by dest id. snd msg

must point to a valid message.

In case of x86 architecture the first two 32­bit words of the message are not taken

from the message data structure but must be contained in registers EDX and EBX.

For more detailed view of generic IPC message see Figure 5.11.

“reg”
~ m 0  (30) 

0 31 1 2 

IPC includes a message to the destination specified by dest id. Message is purely

register based.

For x86 architecture message consists solely of the three 32­bit words in registers

EDX, EBX and EDI.

m = 0 Value­copying send operation; the dwords or the message are simply copied to

the recipient.

m = 1 Flex­page­mapping send operation. The dwords of the message to be sent are

treated as ’send flex­pages’. The described flex­pages are mapped (respectively

granted) into the recipient’s address space.

Mapping/granting stops when either the end of the dwords is reached or when

an invalid flex­page descriptor is is found, in particular 0. The send flex­page de­

scriptors and all potentially following words are also transferred by simple copy

to the recipient. Thus, a message may contain some flex­pages and additional

value parameters.

The recipient can use the received flex­page descriptors to determine what has

been mapped or granted into its address space, including location and access

rights.

RECEIVE MESSAGE DESCRIPTOR

continued on the next page
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Table 5.1: (continued)

Type Description

“nil”
0xFFFFFFFF  (32) 

0 31 

IPC does not include a receive operation.

“mem”
o 0 rcv msg/4  (30) 

0 31 1 2 

IPC includes receiving a message respectively waiting to receive a message. rcv

msg must point to a valid message.

For x86 architecture the first two 32­bit words of the received message are not

stored in the message data structure but are returned in registers EDX, EBX and

EDI. For more detailed view of generic IPC message see Figure 5.11.

“reg”
o 0 0  (30) 

0 31 1 2 

IPC includes receiving a message respectively waiting to receive a message. All

data transferred via registers.

On x86 architecture only messages up to three 32­bit words are accepted. The

received message is returned in registers EDX, EBX and EDI. For more detailed

view of generic IPC message see Figure 5.11.

“rmap”
o 1 rcv fpage  (30) 

0 31 1 2 

IPC includes receiving a message respectively waiting to receive a message. Mes­

sage includes mapping.

On x86 architecture only send­flex­page or up to three 32­bit words are accepted.

The received message is returned in registers EDX, EBX and EDI. If a map mes­

sage is received, rcv fpage describes the receive flex­page (instead of message re­

ceive flex­page option in a memory message buffer). Thus, flex­pages can also be

received without a message buffer in memory.

o = 0 Only messages from the thread specified as dest id are accepted (”closed wait”).

Any send operation from a different thread (or hardware interrupt) will be han­

dled exactly as if the actual thread would be busy.

continued on the next page
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Table 5.1: (continued)

Type Description

o = 1 Messages from any thread will be accepted (”open wait”). If the actual thread

is associated with a hardware interrupt, also messages from messages from this

hardware interrupt can arrive.

5.5.2 Short Messages

Common Format

Short messages are passed directly in registers. Amount of transferred data is lim­

ited by architecture design. These amount of data goes through the registers even in case of

a long message. Format of short message is shown in Figure 5.3.

The presence of flex­pages is indicated by setting the m­bit in the message descrip­

tor. Processing of flex­pages starts at the beginning of the message and continues until an

invalid flex­page is encountered. This last dword and the remainder of the in­line data is

interpreted as by­value data.

by−value data 

flex−page descriptors 

.
 .
 
.
 

reg 
N 

reg 
0 

.
 .
 
.
 

Figure 5.3: Format of the Short Message

Architecture: MIPS R4k

Every successful IPC operation will always copy at least eight dwords to the re­

ceiver. These eight dwords contain the first 64 bytes of a message’s in­line data. The short

message is transferred via eight registers (from s0 to s7, see Figure 5.4).

Architecture: x86

Register messages consist of up to 3 words of 32 bits. Upon sending, the message

is located in the registers EDX, EBX, and EDI (see Figure 5.5). Upon receiving, the same
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by−value data 

flex−page descriptors 

.
 .
 
.
 

s 
7 

s 
0 

.
 .
 
.
 

Figure 5.4: Format of the Short Message

registers serve as a buffer, i.e. the registers EDX, EBX, and EDI contain the received message

(where send EDX is received EDX, etc.).

Since flex­page descriptor occupies two dwords, only one mapping can be sent via

register within one short message. Format of flex­page descriptor described in section 5.5.5.

dword 0  (32) 

dword 1  (32) 

EDI 

EBX 

dword 2  (32) 

EDX 

Figure 5.5: The Short Message via 3 Registers

Sending the Short IPC Message on x86

Note that since for sending and receiving operations L4Ka uses the same system call

(l4_ipc_call ), it contains both send and receive part (each of them is optional). We are

now not interested in IPC messages like Send to & Receive but only in simple send operation.

According to requirements on page 71 it is necessary to set up following parameters

in order to send short message:

– dest id must be set to destination thread’s identifier;

– snd msg descriptor must be set either to L4_IPC_SHORT_MAPMSG(if message

contains mapping/granting) or to L4_IPC_SHORT_MSG(otherwise);

– rcv msg descriptor defines the reply action. Since message does not contain re­

ceive part, rcv msg descriptor must be set to L4_IPC_NIL_DESCRIPTOR;

– three dwords to be sent. In the case of IPC with mapping on x86 architecture

flex­page descriptor is stored in first (snd base) and second (snd fpage) dwords (see

Section 5.5.5);
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– three pointers on dwords ptr_t to be received. Since message does not contain

receive part these fields are not significant;

– timeout must be provided as in any IPC;

– pointer to l4_msgdope_t structure where to store the result status of the IPC

operation.

Simple example of send operation without mappings and reply presented in List­

ing 5.2.

Listing 5.2: Sending short IPC message without mapping (and receive part)

l4_threadid_t dest_id; //here the destination id must be stored

dword_t dummy;

l4_msgdope_t result; //message dope to store result status

//then goes IPC call

l4_ipc_call2(

dest_id, //destination thread id

L4_IPC_SHORT_MSG, //send message descriptor

1, //first dword to send

2, //second

3, //third

L4_IPC_NIL_DESCRIPTOR, //no receive operation

&dummy,

&dummy,

&dummy,

L4_IPC_NEVER, //timeout never expires

&result //result status of the IPC

);

Receiving the Short IPC Message

According to requirements on page 71 it is necessary to set up following parameters

in order to receive short message:

– src id must be set to source thread’s identifier;

– snd msg descriptor must be set to L4_IPC_NIL_DESCRIPTOR (since IPC does not

contain send part);

– rcv msg descriptor must be set either to L4_IPC_SHORT_RECEIVE_FROM(Receive

from — to receive message only from source thread declared in src id field) or to

L4_IPC_SHORT_OPEN_RECEIVE(Open Receive — to receive message from any

source). In the case of the Open Receive operation invoker should also provide

pointer to l4 threadid t as src parameter to l4 ipc call . Via this param­
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eter UID of communicating thread will be returned. For more details about C

interface, see Section 4.5;

– three dwords to be sent. Since there is no sending operation these fields are not

significant;

– three pointers on dwords ptr_t to be received;

– timeout must be provided as in any IPC;

– pointer to l4_msgdope_t structure where to store the result status of the IPC

operation.

Simple example of Receive From operation without mappings presented in Listing 5.3.

Listing 5.3: Receiving short IPC message without mapping from particular thread

l4_threadid_t src_id; //here source id must be stored

dword_t dummy;

l4_msgdope_t result; //message dope to store result status

dword_t dw0, dw1, dw2; //dwords to store received data

//then goes IPC call

l4_ipc_call2(

src_id, //source thread id

L4_IPC_NIL_DESCRIPTOR, //no send operation

dummy,

dummy,

dummy,

L4_IPC_SHORT_RECEIVE_FROM, //receive from particular thread

&dw0, //receive buffer for first dword

&dw1, // for second

&dw2, // for third

L4_IPC_NEVER, //timeout never expires

&result //result status of the IPC

);

5.5.3 Long Messages

The long part of the message is optional and its presence is indicated by the message

descriptor (snd msg/rcv msg). If present, it is a dword­aligned memory buffer pointed to by a

message descriptor. The buffer contains a three dword message header, followed by a number of

mwords (the rest of the in­line data), followed by a number of string dopes. The number of

mwords (in 32­bit dwords, excluding those copied in registers) and string dopes is specified

in the message header.

The format of the long part of the message is depicted in Figure 5.6.
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msg header 

mwords (flex−page descriptors + by−value data) 

string dopes 

message: +0 

+12 

+ x 

Figure 5.6: Format of the Long Message

The value of x is determined by the number of mwords in the message as specified

in the message size dope of the message header.

5.5.4 Message Header

The message header describes the format of the long message. It is illustrated in Fig­

ure 5.7.

flex−page 
(32) 

msg rcv fpage option: +0 

+4 

+8 

msg size dope: 

msg snd dope: 

strings 
(5) 

~ 
(8 ) 

dwords 
(19) 

strings 
(5) 

~ 
(8 ) 

dwords 
(19) 

0 7 8 12 13 31 

Figure 5.7: Format of the Message Header

Meaning of fields is following:

– message size dope (msg size dope) defines the size of the dword buffer, in dwords,

(and hence the offset x of the string dopes from the end of the header), and the

number of string dopes in the long IPC message;

– message send dope (msg snd dope) specifies how many dwords and strings are

actually to be sent. Specifying message send dope values less than the message

size dope values makes sense when the caller is willing to receive more data than

it is sending;

– message receive flex­page option (msg rcv fpage option) describes the address

range in which the caller is willing to accept flex­page mappings or grants in

the receive part (if any) of the IPC. As described in section 3.4, a flex­page region

is defined by providing its base address, b and size exponent, s. Note that the hot­

spot, h, is provided by the sender and hence not required as part of the receive

flex­page. It is common to provide flex­page that covers complete user address

space as this option.
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Using different message send/size dopes permits to specify not only pure send mes­

sages and pure receive message buffers. It is as well possible to send a message and receive

the reply using the same data structure. It is also possible to receive a message in a message

buffer and then forward this buffer as a message without changing the data structure.

x86 Implementation

Suggested definition located in file “urriy.h ” (see Listing 5.4).

Listing 5.4: Message header declaration in “urriy.h”

typedef struct header

{

l4_fpage_t rcv_fpage;

l4_msgdope_t size_dope;

l4_msgdope_t snd_dope;

} header_t;

5.5.5 Message mwords

Format

The (possibly zero) message mwords follow directly after the message header and

contain the rest of the in­line data remaining after the short message. This in­line data is

made up of a number (again, possibly zero) of flex­page descriptors followed by by­value

data (see Figure 5.8).

by−value data 

flex−page descriptors 

.
 .
 .
 

mwords: 

.
 .
 .
 

Figure 5.8: Format of the mwords

Note that on x86 architecture the first three dwords of a message are always transferred

via registers. It is a simplification for user­level programming. This permits to handle long

(memory) and short (registers) messages basically in the same way (the first three dwords

are always in registers). Loading/storing those registers from/to the message/buffer data

structure is not handled by the L4Ka kernel. It can be done at user level. Note also that
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dwords field of the msg size dope of message header must be set correctly, even if it is a pure send

message, because it defines the position x where the first string dope starts (see Figure 5.11).

Flex­page Descriptor

Flex­page descriptors are expected in memory (the long message) only if the m­

bit is set in the message descriptor and all register data (the entire short message) consists

of valid flex­pages. These flex­page descriptors (together with those in the short message)

are provided by the sender for memory mapping purposes. The format of an flex­page

descriptor is depicted in Figure 5.9.

w 

snd base  
(32) 

hot spot: +0 

+4 g snd fpage  (30) 

0 1 31 2 

send flex−page: 

Figure 5.9: Format of the Flex­page Descriptor

Flex­page descriptor is often called “send flex­page” or “snd fpage”. It has the same

format as the message receive flex­page option in the message header except the least significant

two bits are no longer undefined. Setting the w bit will cause the flex­page to be mapped

writable (rather than just read­only) and setting the g­bit causes the flex­page to be granted

(rather than just mapped). The snd base is the mapping hot­spot as described in section 3.4.

The kernel will interpret each pair of dwords of the in­line part (starting from the

short message part and continuing to the long message part, if present) as flex­page de­

scriptors until an invalid descriptor is encountered. This and any feather dwords are then

interpreted as by­value data. Note that all in­line data is copied to the receiver, including

any initial parts, which are interpreted as flex­page descriptors.

Flex­page descriptor is defined as structure l4_snd_fpage_t in file “types.h ” as

presented in Listing 5.5.

Listing 5.5: Flex­page descriptor declaration in “types.h”

typedef struct {

dword_t snd_base;

l4_fpage_t fpage;

} l4_snd_fpage_t;
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5.5.6 String Dopes

Definition

The last components making up a long message are string dopes. There can be zero

or more string dopes, with the exact number specified in the message size dope of the message

header. Each string dope describes a region in memory where out­of­line data can be copied

from (on an IPC send) and copied to (on an IPC receive). The size and location of each string

is specified in a string dope. The kernel copies data from sender memory, specified by the

receiver’s string dopes. Each string dope occupies four dwords and its format is presented

in Figure 5.10.

The first part of the string dope specifies the size and location of the string the caller

wants sent to the destination, while the second part specifies the size and location of a buffer

where the caller is willing to receive a string. Note that strings do not have to be aligned,

and that their size is specified in bytes.

Every string dope can specify a send string dope and a receive string dope. For a

send message, the receive buffer part is ignored. For a receive buffer, the rcv string address

specifies the buffer and rcv string size specifies maximum length; after message was received,

the snd string address is set tot the beginning of the receive buffer and the snd string size

specifies the current length. Thus, received dopes can be forwarded by a successive send

operation without any change.

Format

string dope: +0 

+4 

+8 

*snd string  (32) 

+12 

c snd string size  
(31) 

c rcv string size  (31) 

*rcv string  (32) 

0 30 31 

Figure 5.10: Format of the String Dope

Format of string dope is depicted in Figure 5.10. The c­bit enables scatter/gather func­

tionality. c = 0 specifies the begin of a logical string; c = 1 specifies that this is a continuation

of the last logical string. On the sender side, logical string means a sequence of one or more

parts (dopes) that are transferred as if they were one contiguous string (gather). On the re­
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ceiver side, logical string means a sequence of one ore more buffers that are treated as one

logical buffer; the corresponding received string is scattered among them. Continuations can

be arbitrarily combined on sender and receiver side. Note that length and size fields are

always per part.

x86 Implementation

String dopes are defined as structure l4_strdope_t in file “types.h ” and are

presented in Listing 5.6.

Listing 5.6: String dopes declaration in “types.h”

typedef struct {

dword_t snd_size;

dword_t snd_str;

dword_t rcv_size;

dword_t rcv_str;

} l4_strdope_t;

5.5.7 Generic Long IPC Message

Generic long IPC message of arbitrary content can be constructed w.r.t. the Fig­

ure 5.6. It is shown in Figure 5.11. Note that the first three dwords are not taken from

mwords buffer followed by the message header, but are transferred via registers (EDX, EBX,

EDI in x86 architecture, see Figure 5.5). Note also, that if m­bit is set in the message de­

scriptor, then content of mwords buffer must be treated according to Figure 5.8. Thus, it can

contain arbitrary many flex­page descriptors (see Figure 5.9). And with the first incorrect

descriptor by­value data begins.

5.6 L4Ka IPC Message Summary

In summary, an L4Ka IPC operation can have a send and a receive phase. The snd

msg descriptor describes what is to be sent , and the rcv msg descriptor describes what can

be received. For the IPC to be successful, the sender’s send descriptor and the receiver’s

receive descriptor must be compatible.

Every successful IPC transfers some by­value data, the register (or short) part of the

string (8 bytes on x86, 64 bytes on MIPS R4k). In addition, the following may be transferred,

provided the snd msg descriptor says so, and the rcv msg descriptor allows it:

a) a bigger string, provided that:
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msg header 

mwords (flex−page descriptors + by−value data) 

string dopes 

message: +0 

+12 

+ x 

flex−page 
(32) 

+0 

+4 

+8 

M  
(5) 

~ 
(8 ) 

N  
(19) 

strings 
(5) 

~ 
(8 ) 

dwords 
(19) message 

header 
12 bytes 

(dword 0 − not transferred)  
(32) 

+12 

(dword 1 − not transferred)  
(32) 

+16 

(dword 2 − not transferred)  
(32) 

+20 

(dword 3)  
(32) 

+24 

(dword ( N −1))  
(32) 

+ x −4 

.
 .
 .
 

+ x 

+ x +4 

+ x +8 

*snd string  
(32) 

+ x +12 

c snd string size  
(31) 

c rcv string size  
(31) 

*rcv string  
(32) 

message 

mwords 
N x 4 bytes 

x =( N +3)x 4 

(4x 32) 

.
 .
 .
 

string 

dope  
(M−1) 

+ x +16 

+ y 

y = x + M x 16 + y− 4 

message 

string 

dopes 
M x 16  by tes 

string 

dope  
(0) 

.
 .
 .
 

+ y 

Figure 5.11: Generic Format of the Long IPC Message

1) the send descriptor points to a message descriptor specifying a non­zero

number of dwords in the message send dope, and

2) the receive descriptor points to a message descriptor specifying a non­

zero number of dwords in the message size dope, and

3) there is no error;

b) one or more indirect strings, provided that:
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1) the send descriptor points to a message descriptor specifying a non­zero

number of strings in the send dope, and

2) the receive descriptor points to a message descriptor specifying a non­

zero number of strings in the size dope, and

3) there is no error;

c) one or more page mappings or grants, provided that:

1) the m­bit is set in the send descriptor, and

2) the beginning of the sender’s direct string (starting with the register part)

contains at least one valid flex­page descriptor, and

3) the receive descriptor either has the form of a valid message receive flex­

page and has the m­bit set, or points to a message descriptor containing a

valid message receive flex­page, and

4) there is no error;

Note that the structure of the message descriptor and the string dopes make it easy

to use the same message header for sending and receiving (i.e., having the send descriptor and

receive descriptor point to the same address). The message send dope specifies the size of the

direct string and the number of indirect strings for the send part (if any) of the IPC, while

the message size dope specifies the size of the buffer for the direct string and the number of

buffers for indirect strings for the receive operation (if any).

Note that using the same message descriptor for sending and receiving implies us­

ing the same buffer for the direct string. For indirect strings, each string dope specifies

separately the location and size of the buffers for the strings to be sent and received. If the

IPC does not contain a send and a receive part, then some of the information in the message

header is not used. Similarly, if the send and receive descriptors point to different message

structures, some of the information in them is unused.

Obviously, if the same message descriptor is used for sending and receiving, receiv­

ing a direct string (longer than the register part) will overwrite the string sent. Similarly,

if the receive string of some string dope points to the same address as the send string of the

same or another string dope, then receiving may overwrite some of the data which has been

sent. However, as the send part of the IPC is guaranteed to be concluded before any receive

action takes place, this does not create any problems if the sender does not need the data any

more. The data to be sent will have been safely copied to the receiver prior to the receive

part of the IPC overwriting it ont the caller’s end.
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5.6.1 Send/Receive Protocol

In the overview of this chapter, it was mentioned that the sender and receiver of an

IPC must make certain agreements. Sender and receiver must agree on the following points

for the IPC:

– the size of data to be copied;

– the number and size of strings to be transferred;

– whether the IPC involves memory mappings (the presence of flex­pages).

The kernel does not provide the receiver with any information (e.g. size of data )

concerning the incoming message. Thus, a user message protocol needs to be defined before

hand to ensure agreement on the above points. In general, the receiver can expect more from

the sender than is actually sent but not less.

Examples of such a protocols are:

– the sender arranges in­line data into a particular structure that the receiver is

expecting. Depending on the structure and context, the receiver may not make

use of the entire structure but must receive the entire structure regardless (e.g.

one field of the structure may identify the context and consequently how the other

fields are to be interpreted);

– the receiver always receives a maximum number of maximum size strings;

– use two IPCs. The first one allows the sender to establish an agreement with the

receiver. The second IPC is the main message in the form established by the first

IPC.

5.6.2 Sending Message (Generic Algorithm)

Following recommendations extends those, which are given in Section 5.4.

Sending an IPC message in general can be divided into following steps:

a) declare a result status variable (of type l4_msgdope_t );

b) decide the message format:

1) in the case of the short IPC message only three dwords transferred to the

receiver via registers (as by­value data, or mapping);

2) in the case of the long IPC message number of mwords and strings must

be defined in the message header;

3) message descriptor must be defined according to the message format;
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c) determine the thread id of the desired receiver thread;

d) determine the desired timeout period;

e) provide the parameters for l4_ipc_call .

5.6.3 Receiving Message (Generic Algorithm)

Following recommendations extends those, which are given in Section 5.4.

Receiving an IPC message in general can be divided into following steps:

– declare a result status variable (of type l4_msgdope_t );

a) decide the message format:

1) in the case of the short IPC message only buffer for three dwords is

needed;

2) in the case of the long IPC message amount of buffers for mwords and

strings must be defined in the message header (inside the message size dope);

3) message descriptor must be defined according to the message format;

b) for a closed receive (Receive from), determine the thread id of the desired sender

thread. For an Open Receive, declare a variable to store the thread id of the sender;

c) determine the desired timeout period;

d) provide the parameters for l4_ipc_call .

5.7 Examples

Suggested examples cover most frequent scenarios of use of L4Ka IPC.

5.7.1 Short IPC Messages between Threads

Listing 5.7: Short IPC messages between two threads

/*************************************************************

L4 IPC example

Communication between threads using short messages.

Protocol:

1. foo2 sends data to foo1 in short message

2. foo1 sends acknowledge if data is received ok

or result status of IPC in case of fail

3. foo2 outputs received acknowledge

*************************************************************/
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#include ” u r r i y . h”

void send (void ); //function to send out data to another thread

void foo1 (void );

void foo2 (void );

#define FOOSTACKSIZE 1024

l4_threadid_t foo1_tid, foo2_tid; //thread ids of communicating threads

l4_threadid_t main_tid; //thread id of the root_task

dword_t foo1stack[FOOSTACKSIZE]; //stacks

dword_t foo2stack[FOOSTACKSIZE];

dword_t dummy;

//________________________________FOO1

void foo1()

{

outstring( ”\n foo1 : s t a r t e d with thread id : ”); outhex32(foo1_tid.raw);

l4_msgdope_t dope; //msg_dope to store the result status

dword_t dw0, dw1, dw2; //dwords to be received

receiving:

outstring( ”\n foo1 : blocked in r e c e i v i n g . . . ”);

// ipc receive from prototype

// You can use l4_ipc_receive function from ipc.h for this type of IPC

l4_ipc_call2(

foo2_tid,

(void *) L4_IPC_NIL_DESCRIPTOR, //no send operation

dummy,

dummy,

dummy,

(void *) L4_IPC_SHORT_RECEIVE_FROM,//0 ­ receive from, 1 ­ open receive

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER, //timeout never expires

&dope); //result status

if (L4_IPC_ERROR(dope))

{

outstring( ”\n foo1 : e r r o r while r e c e i v i n g a message”);

outstring( ”\n foo1 : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

dw0 = dope.raw;
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}

else

{

outstring( ”\n foo1 : has rece ived IPC message s u c c e s s f u l l y : ”);

outstring( ”\n foo1 : dw0= ”);outhex32(dw0);

outstring( ”\n foo1 : dw1= ”);outhex32(dw1);

outstring( ”\n foo1 : dw2= ”);outhex32(dw2);

outchar( ’\n ’ );

dw0 = 200;

}

//now sending some kind of acknowlegde

dw1=0;

dw2=0;

//function from ipc.h

l4_ipc_send(

foo2_tid, //source thread id

(void *) L4_IPC_SHORT_MSG,

dw0,

dw1,

dw2,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n foo1 : acknowlegde send f a i l s ”);

outstring( ”\n foo1 : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

}

while (1){l4_sleep(5000000);outchar( ’+ ’ );}

}

//_________________________FOO2

void foo2()

{

outstring( ”\n foo2 : s t a r t e d with thread id : ”);outhex32(foo2_tid.raw);

dword_t dummy;

dword_t dw0, dw1, dw2; //dwords to store received data

l4_msgdope_t dope; //msg_dope to store result status

// ipc send prototype

// You can use l4_ipc_send function from ipc.h for this type of IPC

l4_ipc_call2(

foo1_tid, //destination thread id

(void *) L4_IPC_SHORT_MSG, //message type: short
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1,

2,

3,

(void *) L4_IPC_NIL_DESCRIPTOR, //no receive operation

&dummy,

&dummy,

&dummy,

L4_IPC_NEVER, //timeout never expires

&dope); //result status

if (L4_IPC_ERROR(dope))

{

outstring( ”\n foo2 : e r r o r while sending a message”);

outstring( ”\n foo2 : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

}

//now receiving acknowlegde

//function from ipc.h

l4_ipc_receive(

foo1_tid, //source thread id

(void *) L4_IPC_SHORT_MSG,

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n foo2 : acknowlegde r e c e i v e f a i l s ”);

outstring( ”\n foo1 : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

}

else

{

if (dw0==200) outstring( ”\n foo2 : rece ived acknowlegde i s OK”);

else

{

outstring( ”\n foo2 : rece ived acknowlegde i s an e r r o r : ”);

outhex32(dw0);

}

}

while (1){l4_sleep(5000000);outchar( ’− ’ );};

}
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//_____________________MAIN

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

//thread id of the root_task

main_tid = l4_myself();

l4_threadid_t my_pager = get_current_pager(l4_myself());

foo1_tid=main_tid;

foo1_tid.id.thread = 8;

// foo1 thread creation via system call l4_thread_ex_regs

l4_thread_ex_regs(

foo1_tid,

(dword_t) foo1,

(dword_t) &foo1stack[FOOSTACKSIZE ­ 1],

&my_pager,

&my_pager,

&dummy,

&dummy,

&dummy);

outstring( ”\n r o o t t a s k : f i r s t thread i s crea ted with thread id ”);

outhex32(foo1_tid.raw);

// foo2 thread creation using wrapper from helpers.h

//parameters differs, so be careful

foo2_tid=main_tid;

foo2_tid.id.thread=9; //this only needed by foo1, to know the dest thread id

create_thread(

9, //needs only id.threadid field

foo2,

&foo2stack[FOOSTACKSIZE­1],

my_pager); //thread id of pager, not a pointer to it

outstring( ”\n r o o t t a s k : second thread i s crea ted with thread id ”);

outhex32(foo2_tid.raw);

enter_kdebug( ”\n r o o t t a s k : two threads succ−ly crea ted ! ”);

while (1){l4_sleep(5000000);};

}

5.7.2 Long IPC Messages between Threads
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Listing 5.8: Long IPC message between two threads

/*************************************************************

L4 IPC example

Communication between threads using long messages.

Message consists of three strings and five mwords.

Protocol:

1. root_task creates foo thread to communicate with

2. then sends long message with strings gathered into one

3. then sends a message of same format,

but strings are not gathered.

*************************************************************/

#include ” u r r i y . h”

//define the maximum size of strings to receive

#define MAX_BUF 255

// First, defining the structure of the message

// We assuming the simple protocol ­ messages have

// 5 mwords and 3 strings.

const int Mwords=5;

const int Strings=3;

typedef struct msg

{

header_t header;

dword_t buf[Mwords];

l4_strdope_t strdope[Strings];

}

msg_t;

// Thread ids of communicating threads

l4_threadid_t main_tid; //root_task’s main thread

l4_threadid_t foo_tid; // another thread of root_task

dword_t dummy;

//_________________FOO function

void foo()

{

foo_tid = l4_myself();

outstring( ” foo : foo thread i s s t a r t e d with UID : ”); outhex32(foo_tid.raw);

l4_msgdope_t dope; //msg_dope to store result status

dword_t dw0, dw1, dw2; //first three mwords will go via registers!

char sbuf[Strings][MAX_BUF]; //buffers for strings to receive
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msg_t longmsg; //long message of predefined type

receiving:

//clear buffers

for (int j=0; j<Strings; j++)

for (int i=0; i<MAX_BUF; i++)

sbuf[j][i]=0;

//fill in message header fields

longmsg.header.size_dope.md.dwords = Mwords;

longmsg.header.size_dope.md.strings = Strings;

longmsg.header.snd_dope.raw = 0;

//fill in string dopes

// receiving without ’scatter’ option enabled

for (int i=0; i<Strings; i++)

{

longmsg.strdope[i].rcv_size = MAX_BUF; //maximum receive size

longmsg.strdope[i].rcv_str = (dword_t) &sbuf[i]; //pointer to start of buffer

longmsg.strdope[i].snd_size = 0;

longmsg.strdope[i].snd_str = 0;

}

outstring( ” foo i s blocked in r e c e i v i n g . . . ”);

l4_ipc_call2(

main_tid,

(void *) L4_IPC_NIL_DESCRIPTOR,

0,

0,

0,

(msg_t *) (((dword_t) &longmsg) & ˜ (3)),

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER,

&dope

);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n foo : e r r o r while r e c e i v i n g a message”);

outstring( ”\n foo : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

}

else

{

outstring( ”\n foo : has rece ived IPC message s u c c e s s u f u l l y ”);

outstring( ”\n foo : dw0= ”);outhex32(dw0);

outstring( ”\n foo : dw1= ”);outhex32(dw1);

outstring( ”\n foo : dw2= ”);outhex32(dw2);
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outchar( ’\n ’ );

for (int i=0; i<Strings; i++)

{outstring( ”\n foo : s t r i n g =”);outstring(sbuf[i]);}

for (int i=0; i<Mwords; i++)

{outstring( ”\n foo : mword= ”);outhex32(longmsg.buf[i]);}

}

enter_kdebug( ”\n breakpoint before next r e c e i v i n g ”);

goto receiving;

}

dword_t foostack[1024];

//_________________________SEND function

void send( char *send_str1, char *send_str2, char *send_str3, bool together)

{

l4_msgdope_t dope; //result status of IPC

char *sbuf;

msg_t longmsg; //long message of predefined type

//fill in message header fields

longmsg.header.snd_dope.raw=0;

longmsg.header.snd_dope.md.dwords=Mwords;

longmsg.header.snd_dope.md.strings=Strings;

longmsg.header.size_dope=longmsg.header.snd_dope;

longmsg.header.rcv_fpage.fpage=0;

longmsg.strdope[0].snd_size = strlen(send_str1);

if (together)

{//if strings must be sent together

// use the ’gather’ functionality of send string dopes

// by turning on most significant bit (’c’)

longmsg.strdope[1].snd_size = 0x80000000 | strlen(send_str2);

longmsg.strdope[2].snd_size = 0x80000000 | strlen(send_str3);

}

else

{// or just send stings one by one

longmsg.strdope[1].snd_size = strlen(send_str2);

longmsg.strdope[2].snd_size = strlen(send_str3);

}

//addressed of strings to be sent
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longmsg.strdope[0].snd_str = (dword_t) send_str1;

longmsg.strdope[1].snd_str = (dword_t) send_str2;

longmsg.strdope[2].snd_str = (dword_t) send_str3;

//no receive option

for (int i=0; i<Strings; i++)

{

longmsg.strdope[i].rcv_size = 0;

longmsg.strdope[i].rcv_str = 0;

}

//fill in mwords buffer, starting from mword 3,

// because first three are transferred via registers

for (int i=3; i<Mwords; i++)

{

longmsg.buf[i]=i+65; //some values just to see, that it works

}

l4_ipc_call2(

foo_tid,

(msg_t *) (((dword_t)&longmsg) &˜(3)), //send decriptor for long message without

mappings

1,

2,

3,

(void *) L4_IPC_NIL_DESCRIPTOR,

&dummy,

&dummy,

&dummy,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n main : e r r o r while sending a message”);

outstring( ”\n main : the r e s u l t msgdope of IPC i s ”);

outhex32(dope.raw);outchar( ’\n ’ );

}

};

//_____________________MAIN

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

main_tid = l4_myself();

//foo thread creation

create_thread(10, foo, &foostack[1024], get_current_pager(l4_myself()));
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l4_sleep(1000000); //little delay is necessary for thread to get started

// beware! otherwise you will get an error code 0x0001, which says that

// source/destination thread id not exists!

kd_inchar(); //wait for user to press a key

//sending strings together

send( ”These”, ” three s t r i n g ”, ” comes together . . . \ 0 ”, true );

kd_inchar(); //before next sent operation

send( ”And these ”, ” are ”, ” not ”, false );

while (1){l4_sleep(1000000); outchar( ’− ’ );};

}
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6 L4ka Additional Information

6.1 Bootstrap

At boot time, the µ­kernel image is loaded into resident memory (RAM). The first

process started (in kernel mode) by the L4Ka bootstrap is σ0 (see Section 6.3). σ0 then in

turn starts up all the initial servers in user mode. All initial servers have registered as their

pager and exception handler. σ0 does not allocate any stack space for the initial servers. The

initial servers must allocate their own stack space and point the stack pointer variable to the

beginning of that allocated space.

After booting, L4Ka enters protected mode if started in real mode, enables paging

and initializes itself. It generates the basic address space­servers σ0 and a root server task

(also known as a root task) which is intended to boot the higher­level system. σ0 and the

root task are user­level tasks and are not parts of the µ­kernel. The predefined ones can be

replaced by modifying the EIP (Entry Instruction Pointer) in the kernel configuration before

starting L4Ka. The kernel debugger kdebug is also not part of the µ­kernel and can accord­

ingly be replaced by modifying the table. For more detailed information about architecture

independent kernel debugger kdebug for Hazelnut kernel, refer to [12].

6.2 Page Fault Handling

A page fault occurs when a task tries to access (read from or write to) memory that

has not already been mapped into its virtual address space. A pager is a thread that handles

page faults by determining the actions to be taken in the event of a page fault (usually give

a mapping for the faulting address to the faulter).

When a new task/thread is created, a pager is registered with that task/thread (re­

member the task creation procedure in Section 4.2). The registered pager is then responsible

for handling all the thread’s page faults. When a client thread triggers a page fault, the L4Ka

kernel intercepts the interrupt and sends an IPC to the pager on the client’s behalf. That is,
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the kernel sends the client’s faulting address and instruction pointer in the first two words

of a short IPC message to the registered pager pretending that the IPC actually comes from

the faulting thread.

~ w 
0 
 (EDX) 

w 
1 
 (EBX) 

0 1 2 31 

fault address/4 (30) w 

faulting user−level EIP  
(32) 

Figure 6.1: IPC from Kernel to the Pager of the Faulter

Faulting user­level Entry Instruction Pointer shows where faulter have caused page

fault. fault address is truncated to thirty bits. Meaning of w­bit is following:

w = 0 Read page fault;

w = 1 Write page fault.

The pager will receive the page fault message as if it were directly from the faulter. It

can then respond by sending a flex­page mapping for the faulting address back to the faulter

or may implement another policy. The client does not actually receive the pager’s mapping

as the mapping is intercepted by the kernel on the client’s behalf. The kernel restarts the

client with the new mapping in place.

Interaction between the thread, its pager and the kernel is shown in Figure 6.2.

Thread is trying to access memory for which no mapping exists. Hence, Memory Man­

agement Unit (MMU) raises a page fault exception. L4Ka looks up the pages of the running

(and thus faulting) thread. The page fault is transformed into and IPC message describing

the fault (in form described in Figure 6.1), and then is forwarded to the pager. The pager is

also a thread, which may then decide how to react on the page fault. It encodes its answer

as a page mapping IPC message, with which it replies to the faulter. L4Ka sees that this

is a mapping message, intercepts it, and programs the MMU to provide the corresponding

mapping in the address space of the faulter.

σ0 (see Section 6.3) is an example of a pager service. It is in fact the main pager

because it handles the initial address space and all mappings can be traced back to σ0. The

other type of pagers, which stem from σ0 are the external pagers. External pagers are user­

level threads that perform the task of page fault handling for other threads. External pagers

themselves originally obtain their mappings from an intermediate pager (which is just an­

other external pager).
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KERNEL 

pager 

thread 1 

4. pager replies 

3. pager takes 
appropriate 

action 

2. kernel notifies pager 

1. thread 
 generates 
 page fault 

thread 2 
thread 3 

Figure 6.2: Interaction between Thread, its Pager and Kernel

Pager Thread

Basic tasks that a user­level pager needs to perform:

– wait for a page fault message from any client (to which it is assigned upon cre­

ation of task/thread);

– obtain a mapping of the faulting address for itself (if it doesn’t already have it!)

before it can pass the mapping on to the faulter;

– construct the send flex­page descriptor for the mapping to the faulting client.

The single mapping to be sent is the same size as the single hardware page (s =

12) and has the fault address as the send flex­page base (b = fault address) and

also the hot­spot. Function l4_fpage (defined in “types.h”) can be useful to

construct a flex­page;

– send the mapping to the client;

– return to the start to wait for the next client page fault.

Example of a simple pager thread was given in Section 4.2. As it was mentioned

above, a valid page fault handler UID must be provided for l4_task_new system call to

activate a task.
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6.3 The Main Pager σ0

An initial address space, called σ0 automatically exists after the system is booted. Al­

though it is not a part of the kernel, its basic protocol is defined with L4Ka::Hazelnut µ­

kernel. Special σ0 implementations may extend this protocol.

The address space σ0 is idempotent, i.e. all virtual addresses in this address space are

identical to the corresponding physical address. Note that pages requested from σ0 continue

to be mapped idempotent if the receiver specifies its complete address space as receive flex­

page.

σ0 gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all

pagers request the memory they need in the startup phase of the system so that afterwards

σ0 has spent all its memory. Further requests will then automatically denied (a null reply is

sent). This enables the OS to have full control of memory (other than what is reserved by

L4Ka). The OS can then provide its own pager, which maps memory to user tasks (with the

appropriate checks) in response to user page faults.

Part of the kernel reserved space contains the kernel information page and other kernel

information (their purpose is not covered in this document, refer to [11]). These special

pages are mapped read­only upon request. Such mappings are part of the σ0 protocol.

6.3.1 σ0 Protocol

A task can request a mapping from σ0 by sending a short message (see Section 5.5.2)

to σ0. The specific request is determined by up to the first two words in the register data

of the request. If the request is valid, σ0 sends a mapping to the requester. Note that σ0

distinguish requests from kernel and non­kernel threads, and reacts accordingly.

User­level programmer need not to know σ0 protocol, because in L4Ka::Hazelnut

the pager of the root task is the intermediate pager, not σ0 (see Figure 6.3). As it was men­

tioned above, σ0 is a user­level application. The inclusion of σ0 into the L4µ­kernel is specific

only for L4/MIPS (see Figure 4.2 in [15]). Source code of σ0 is located in applications direc­

tory (apps/sigma0/main.c ). At the end of this chapter (in Examples section) presented

extended σ0 protocol (see Listing 6.2) and example of utilizing it in task creation issue (see

Listing 6.1).
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Figure 6.3: The Main Pager σ0

6.4 Interrupt Handling

A thread can install itself as an interrupt handler for a particular interrupt by as­

sociating itself with the interrupt. A thread that wants to associate itself with an interrupt

needs to invoke a receive IPC specifying the interrupt number (plus one) as the sender (src

parameter) and a zero timeout.

Each interrupt is assigned to the first thread that attempts to associate with it. Any

attempt to associate with an already associated interrupt will fail. A thread can dissociate

itself as a handler for an interrupt by associating with a NULL interrupt.

Once associated with an interrupt, a handler waits for interrupts by invoking a re­

ceive IPC again but with non­zero timeout. Thus, in both actions needed to handle interrupt

(interrupt association and interrupt receiving) l4_ipc_call is used. Example at the end

of this chapter shows precise step­by­step procedure of interrupt handling (see Listing 6.3).
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6.5 Preemption

There exists only one internal preempter for every thread, which is invoked after

each timer interrupt if the time slice of running thread is expired or if it is called directly

by kernel or user (l4 thread switch system call). This internal preempter is essential for

the system itself. The scheduling is done by the l4 thread schedule function. External

preempter: that is not a really preempter, but a user­level scheduler. The preemption is

done by the kernel. The External preempter is scheduled by the kernel if no task/thread

with higher priority is ready. The intended purpose of an external preempter is to refine the

kernels scheduling method with any user­level method.

Preemption is not implemented in L4Ka::Hazelnut. But there are present related

parameters in system calls: external preempter, internal preempter, maximum controlled priority.

6.6 Examples

6.6.1 σ0 Extension

σ0 protocol was extended. When sending long IPC message with 0xCCCCCCCCin

first dword and only one string attached σ0 output this string on the screen. σ0 writes data

directly to text area of video memory (starting from address 0xb8000 ).

Listing 6.1: Example of root task utilizing σ0 extension

/*********************************************************************

* File path: root_task/main.c

* Description: utilizing sigma0 extension

* new task is created by the root task

* and notifies its start by writing on

* screen. Not using standard printf/outstring

* stuff, but using sigma0 extension

* pager: on page fault asks pager of itself for

* this page. then delivers it via short IPC message

* with mapping to the faulter. works only with 4k pages.

* 04.02.04 urriy@wjpserver.cs.uni­sb.de

* Note that this example only works if file apps/sigma0/sigma0.c

* replaced by apps/sigma0/sigma0ext.c

********************************************************************/

#include ” u r r i y . h”

l4_threadid_t main_tid;

l4_threadid_t subtask_tid;
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#define PAGERSTACKSIZE 4096

dword_t pager_stack[PAGERSTACKSIZE];

#define SUBTASKSTACKSIZE 4096

dword_t subtask_stack[SUBTASKSTACKSIZE];

void pager(void );

void subtask( void );

l4_threadid_t pager_tid;

l4_threadid_t dummy_tid;

dword_t dummy;

//structure of message to be sent to the sigma0

typedef struct msg

{

header_t header;

l4_strdope_t strdope;

} msg_t;

//_________________________SEND

void send( char *send_str)

{

l4_threadid_t tid = l4_myself();

l4_msgdope_t msgdope; //msgdope for result status

char *sbuf; //string to be sent

msg_t longmsg;

longmsg.header.snd_dope.raw=0;

longmsg.header.snd_dope.md.dwords=0;

longmsg.header.snd_dope.md.strings=1; //sending one string

longmsg.header.size_dope=longmsg.header.snd_dope;

longmsg.header.rcv_fpage.fpage=0;

sbuf=send_str;

longmsg.strdope.snd_size = strlen(sbuf); //size of string

longmsg.strdope.snd_str = (dword_t)sbuf; //starting address

longmsg.strdope.rcv_size = 0;

longmsg.strdope.rcv_str = 0;

//send string to output

l4_ipc_send(L4_SIGMA0_ID,

//long message without mappings

(msg_t *) (((dword_t)&longmsg) & ˜(3)),

0xCCCCCCCC, //first dword according to extended protocol

1,

2,
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L4_IPC_NEVER,

&msgdope);

//dummy reply from sigma0

l4_ipc_receive(L4_SIGMA0_ID,

NULL,

&dummy,

&dummy,

&dummy,

L4_IPC_NEVER,

&msgdope);

};

//________________________________SUBTASK

void subtask()

{

send( ” New task i s s t a r t e d . . . \ 0 ”);

kd_inchar();

send( ” . . . nothing to do , e x i t i n g .\0 ”);

while (1) {l4_sleep(1000000);outchar( ’ . ’ );}

}

//________________________________PAGER

void pager()

{

l4_threadid_t client;

l4_msgdope_t dope;

dword_t dw0, dw1, dw2;

dword_t map=2;

dword_t fault_addr;

dword_t addr;

l4_threadid_t s0 = L4_SIGMA0_ID;

l4_threadid_t h_pager = get_current_pager(l4_myself());

while (4)

{

outstring( ”\n pager : wait ing IPC message from kernel ”);

l4_ipc_wait(&client, 0, &dw0, &dw1, &dw2, L4_IPC_NEVER, &dope);

while(5)

{

//fault address without mask

fault_addr = (dw0 & (˜(dword_t) 3));

//let pager notify higher level pager that writing access is required

dw0 = fault_addr | 2;

outstring( ”\n pager : handling a page f a u l t a t address ”);
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outhex32(fault_addr);

//asking page from higher level pager

l4_ipc_call(h_pager,

L4_IPC_SHORT_MSG,

dw0,

dw1,

dw2,

//accepting page in whole address space

(void *) l4_fpage(0, L4_WHOLE_ADDRESS_SPACE, 1, 0).raw,

&addr, //address to be returned in the first dword

&dummy,

&dummy,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r while asking f o r page ”);

break ;

}

outstring( ”\n pager : memory page i s given by higher l e v e l pager . address ”);

outhex32(addr);

//first dword contains flex­page describing the memory region

dw0 &= L4_PAGEMASK;

//second dword contains hot­spot which must be specified correct

dw1 = dw0 | (L4_LOG2_PAGESIZE << 2) | (L4_IPC_SHORT_MAPMSG);

//send IPC message, which contains a mapping of desired page

// and then wait for the next page fault

l4_ipc_reply_and_wait(client,

(void *) L4_IPC_SHORT_MAPMSG,

dw0,

dw1,

dw2,

&client,

L4_IPC_SHORT_MSG,

&dw0,

&dw1,

&dw2,

L4_IPC_NEVER,

&dope);

if (L4_IPC_ERROR(dope))

{

outstring( ”\n pager : e r r o r reply and wait ”);
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break ;

}

}

}

}

//_____________________MAIN

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

l4_threadid_t m_pager=get_current_pager(l4_myself());

l4_threadid_t s0 = L4_SIGMA0_ID;

main_tid = l4_myself();

pager_tid = main_tid;

pager_tid.id.thread = 1;

//creating a pager thread

l4_thread_ex_regs

(pager_tid,

(dword_t) pager,

(dword_t)&pager_stack[PAGERSTACKSIZE ­ 1],

&m_pager,

&m_pager,

&dummy,

&dummy,

&dummy);

enter_kdebug( ”\n main : pager i s crea ted ”);

//creating a new task

subtask_tid.raw = main_tid.raw;

subtask_tid.id.task = 10;

subtask_tid.id.thread = 0;

//system call will return a thread id of new task

subtask_tid = l4_task_new

(subtask_tid, //thread id of destination task

255, //MCP value to maximum possible priority

(dword_t) &subtask_stack[SUBTASKSTACKSIZE ­ 1], //SP

(dword_t) subtask, //IP

pager_tid //thread id of pager

);

enter_kdebug( ”\n main : subtask i s crea ted ”);

while(1){l4_sleep(1000000);outchar( ’− ’ );}

}
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Listing 6.2: Extended σ0 protocol

/*********************************************************************

*

* Copyright (C) 2001­2002, Karlsruhe University

*

* File path: sigma0/sigma0.c

* Description: old sigma0 implementation

* 04.02.04 urriy@wjpserver.cs.uni­sb.de

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation; either version 2

* of the License, or (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place ­ Suite 330, Boston, MA

* 02111­1307, USA.

*

* sigma0.c,v 1.22.2.1 2001/12/13 07:46:23 uhlig Exp

*

********************************************************************/

#include <config.h>

#if defined(CONFIG_L4_NEWSIGMA0)

#include ”sigma0−new . c ”

#else

#include <l4/l4.h>

#include <l4io.h>

#include ” kip . h”

#if defined(CONFIG_ARCH_X86)

#define PAGE_BITS 12

#define SUPERPAGE_BITS 22

#endif

#if defined(CONFIG_ARCH_ARM)

#define PAGE_BITS 12

#define SUPERPAGE_BITS 20

#endif

#define PAGE_SIZE (1 << PAGE_BITS)
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#define PAGE_MASK (˜(PAGE_SIZE­1))

#define SUPERPAGE_SIZE (1 << SUPERPAGE_BITS)

#define SUPERPAGE_MASK (˜(SUPERPAGE_SIZE­1))

//#define VERBOSE

#if 1

extern ”C” void memset( char* p, char c, int size)

{

for (;size­­;)

*(p++)=c;

}

#endif

#define iskernelthread(x) (x.raw < myself.raw)

#define MB64 64L*1024L*1024L

#define MB128 128L*1024L*1024L

#define MB256 256L*1024L*1024L

#define MB512 512L*1024L*1024L

#define MAX_MEM MB256

static unsigned char page_array[MAX_MEM/PAGE_SIZE];

void dump_kip(kernel_info_page_t* kip)

{

#define kipel(x) printf( ” kip : % s=\ t%x\n”, #x, kip­>x);

printf( ”%s : k e r n e l i n f o p a g e magic i s %c%c%c%c\n”, __FUNCTION__,

(( char *) kip)[0],

(( char *) kip)[1],

(( char *) kip)[2],

(( char *) kip)[3]);

kipel(main_mem_low); kipel(main_mem_high);

//enter_kdebug("foo");

kipel(sigma0_low); kipel(sigma0_high);

kipel(root_low); kipel(root_high);

//enter_kdebug("foo");

kipel(reserved_mem0_low); kipel(reserved_mem0_high);

kipel(reserved_mem1_low); kipel(reserved_mem1_high);

//enter_kdebug("foo");

kipel(dedicated_mem0_low); kipel(dedicated_mem0_high);

kipel(dedicated_mem1_low); kipel(dedicated_mem1_high);

//enter_kdebug("foo");
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printf( ”\nsigma0 : Avai lable main memory: %d MB (%d KB) \n”,

(kip­>main_mem_high­kip­>main_mem_low)/1024/1024,

(kip­>main_mem_high­kip­>main_mem_low)/1024);

//enter_kdebug("foo");

}

extern ”C” void sigma0_main(kernel_info_page_t* kip)

{

l4_threadid_t client;

int r;

l4_msgdope_t result;

dword_t dw0, dw1, dw2;

dword_t msg;

l4_threadid_t myself = l4_myself();

#ifdef VERBOSE

printf( ”%s : k e r n e l i n f o p a g e i s a t %p\n”, __FUNCTION__, kip);

#endif

if ((((char *) kip)[0] != ’L ’ ) |

(((char *) kip)[1] != ’ 4 ’ ) |

(((char *) kip)[2] != 0xE6) |

(((char *) kip)[3] != ’K ’ ))

enter_kdebug( ”sigma0 : i n v a l i d KIP ! ”);

#ifdef VERBOSE

dump_kip(kip);

#endif

dword_t free_mem = kip­>main_mem_low;

dword_t kernel_mem = kip­>main_mem_high­PAGE_SIZE;

#define IDX(x) ((x)­(kip­>main_mem_low/PAGE_SIZE))

if (sizeof(page_array) < (kip­>main_mem_high­kip­>main_mem_low)/PAGE_SIZE)

{

printf( ”sigma0 : too much memory − %d < %d\n”, sizeof (page_array), (kip­>main_mem_high­kip­>

main_mem_low)/PAGE_SIZE);

enter_kdebug( ” too much memory”);

};

#define PAGE_SHARED 0xFC

#define PAGE_GONE 0xFD

#define PAGE_FREE 0xFE

#define PAGE_RESERVED 0xFF

#define PAGE_ROOT 0x04
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/* initialize the page array */

for (dword_t i = 0; i < sizeof (page_array); i++)

page_array[i] = PAGE_RESERVED;

for (dword_t i = kip­>main_mem_low/PAGE_SIZE;

i < kip­>main_mem_high/PAGE_SIZE; i++)

page_array[IDX(i)] = PAGE_FREE;

#define exclude(name,attrib) \

if ( kip­>##name##_high ) { \

if ((kip­>##name##_low >= kip­>main_mem_low) && \

(kip­>##name##_high <= kip­>main_mem_high)) { \

for ( dword_t i = kip­>##name##_low / PAGE_SIZE; \

i < (kip­>##name##_high) / PAGE_SIZE; \

i++ ) \

page_array[IDX(i)] = PAGE_##attrib; } \

else \

printf( ”kip−>” #name ” i s wrong\n”); }

exclude(dedicated_mem0, SHARED);

exclude(dedicated_mem1, SHARED);

exclude(dedicated_mem2, SHARED);

exclude(dedicated_mem3, SHARED);

exclude(dedicated_mem4, SHARED);

exclude(reserved_mem0, RESERVED);

exclude(reserved_mem1, RESERVED);

exclude(root, ROOT);

exclude(sigma0, RESERVED);

exclude(sigma1, RESERVED);

exclude(kdebug, RESERVED);

#if defined(CONFIG_ARCH_X86)

page_array[IDX(0xb8000/PAGE_SIZE)] = PAGE_SHARED;

page_array[IDX(0x01000/PAGE_SIZE)] = PAGE_RESERVED;

#endif

dword_t one_shot_break = 0;

/*

macros to figure out request type

assumption: dw0:dw1:dw2 contains the received message

*/

#define GET_ANY_PAGE (dw0 == 0xFFFFFFFC)

#define GET_KMEM_PAGES ((dw0 == 1) && ((dw1 & 0xFF) == 0))

#define GET_INFO_PAGE ((dw0 == 1) && ((dw1 & 0xFF) == 1))

#define GET_THIS_PAGE_SUPER ((dw0 & 1) && (dw1 == (SUPERPAGE_BITS << 2)))

#if defined(CONFIG_ARCH_X86)

110



 

Изм. Лист № докум. Подпись Дата

Лист

ДП.991137.ПЗ 

#define GET_THIS_PAGE (dw0 < 0x40000000)

#endif

#if defined(CONFIG_ARCH_ARM_EP7211)

#define GET_THIS_PAGE (1)

#endif

//urriy

//>­­extending ­ adding some kind of print directly into video memory

//message format stuff

typedef struct header

{

l4_fpage_t rcv_fpage;

l4_msgdope_t size_dope;

l4_msgdope_t snd_dope;

}

header_t;

typedef struct prmsg

{

header_t header;

l4_strdope_t strdope;

}

one_str_msg_t;

//message buffers stuff

#define MAX_BUF (2L*1024L*1024L)

char sigma0_buf[MAX_BUF];

//video memory stuff

#define VIDEO_MEMORY_EP (0xb8000)

#define totaloffset (((yoffset * 80) + xoffset)*2)

int xoffset=10, yoffset=0;

char *ptr; dword_t startaddr = VIDEO_MEMORY_EP;

int color=3;

//­­<

//urriy

//>­­

one_shot_break=1; //debug option

one_str_msg_t printmsg;

printmsg.header.size_dope.md.dwords = 0;

printmsg.header.size_dope.md.strings = 1;

printmsg.header.snd_dope.raw = 0;

printmsg.strdope.rcv_size = MAX_BUF;

printmsg.strdope.rcv_str = (dword_t) &sigma0_buf;
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printmsg.strdope.snd_size = 0;

printmsg.strdope.snd_str = 0;

void * rcv_dsc = (one_str_msg_t *) (((dword_t) &printmsg) & ˜ (3));

//­­<

while (1)

{

//printf("%s: do ipc_wait\n", __FUNCTION__);

// r = l4_ipc_wait(&client, NULL, &dw0, &dw1, &dw2, L4_IPC_NEVER, &result);

r = l4_ipc_wait(&client, rcv_dsc, &dw0, &dw1, &dw2, L4_IPC_NEVER, &result);

while (1)

{

if (one_shot_break)

{

enter_kdebug( ” one shot break ”);

one_shot_break = 0;

}

msg = 2; /* usually we map an fpage */

if (iskernelthread(client))

{

switch (dw0)

{

case 0xFFFFFFFC:

case 0xFFFFFFFE: /* Jochen */

printf( ”sigma0 : s0 r e c e i v e s %x from a kernel thread −> grant any page\n”,

dw0);

/* grant any page */

while (kernel_mem > 0 && page_array[IDX(kernel_mem/PAGE_SIZE)] != PAGE_FREE)

kernel_mem ­= PAGE_SIZE;

if (kernel_mem == 0)

{

//enter_kdebug("sigma0 out of memory");

msg = dw0 = dw1 = dw2 = 0;

}

else

{

page_array[IDX(kernel_mem/PAGE_SIZE)] = PAGE_GONE;

dw0 = kernel_mem;

dw1 = dw0 | (PAGE_BITS << 2) | 3;

dw2 = 0;

printf( ” grant : % x:%x:%x−%x\n”, dw0, dw1, dw2, msg);

}
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break;

case 0x00000001:

printf( ”sigma0 : % x f o r number of recommended pages\n”,

client.raw);

if ((dw1 & 0xFF) == 0)

{

/* reply number of pages recommended for kernel use */

msg = 0; dw0 = 0x100;

}

else

msg = dw0 = dw1 = dw2 = 0;

break;

default :

printf( ”sigma0 : unknown request %x:%x:%x from %x\n”,

dw0, dw1, dw2, client.raw);

msg = dw0 = dw1 = dw2 = 0;

break;

}

}

else

{

switch (dw0)

{

case 0xCCCCCCCC:

//urriy

//>­­ from here our print routine goes

ptr = ( char *) startaddr + totaloffset;

for (int i=0; (i < MAX_BUF) && (sigma0_buf[i/2]!=0);i++)

{

if ((i%2)==0) *ptr=sigma0_buf[i/2];

else *ptr = ( char ) 8 + color;

ptr++;

}

//­­<

break ;

case 0xFFFFFFFC:

#ifdef VERBOSE

printf( ”sigma0 : s0 r e c e i v e s %x from %p −> map any page”,

dw0, client);

#endif

while (free_mem < MAX_MEM && page_array[IDX(free_mem/PAGE_SIZE)] != PAGE_FREE)

free_mem += PAGE_SIZE;

if (free_mem >= MAX_MEM)

{

//enter_kdebug("sigma0 out of memory");
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msg = dw0 = dw1 = dw2 = 0;

}

else

{

#if defined(CONFIG_VERSION_X0)

page_array[IDX(free_mem/PAGE_SIZE)] = client.id.task;

#elif defined(CONFIG_VERSION_X1)

page_array[IDX(free_mem/PAGE_SIZE)] = PAGE_GONE;

#endif

dw0 = free_mem;

dw1 = dw0 | (PAGE_BITS << 2) | 2;

dw2 = 0;

// printf(" map: %x\n", dw0);

}

break;

case 0x00000001:

if ((dw1 & 0xFF) == 1)

{

#ifdef VERBOSE

printf( ”sigma0 : % x reques ts kernel−i n f o page\n”,

client.raw);

#endif

dw0 = 0;

dw1 = (((dword_t)kip) & PAGE_MASK) | (PAGE_BITS << 2);

dw2 = 0;

}

else

msg = dw0 = dw1 = dw2 = 0;

break;

#if defined(CONFIG_ARCH_X86)

case 0x00000000:

case 0x00000002 ... 0x40000000:

#elif defined(CONFIG_ARCH_ARM_EP7211) || defined(CONFIG_ARCH_ARM_BRUTUS)

case 0xC0000000 ... 0xC0800000:

#endif

// printf("sigma0: s0 receives %x,%x from %x\n", dw0, dw1, client.raw);

if ( (dw0 & 1) && (dw1 & 0xFF) == (SUPERPAGE_BITS << 2) )

{

/* map superpage writeable

and uncacheable !!! */

dword_t adr = dw0 & SUPERPAGE_MASK;

dword_t i;

for (i = 0; i < SUPERPAGE_SIZE/PAGE_SIZE; i++)

if (page_array[IDX(adr/PAGE_SIZE + i)] != PAGE_FREE)

{
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msg = 0;

break;

}

if (msg)

{

for (i = 0; i < 1024; i++)

#if defined(CONFIG_VERSION_X0)

page_array[IDX(adr/PAGE_SIZE + i)] = client.id.task;

#elif defined(CONFIG_VERSION_X1)

page_array[IDX(adr/PAGE_SIZE + i)] = PAGE_GONE;

#endif

dw0 = adr;

dw1 = dw0 | (SUPERPAGE_BITS << 2) | 2;

dw2 = 0;

#ifdef VERBOSE

printf( ”sigma0 : map 4M page at %x to %x\n”, adr, client.raw);

#endif

}

}

else

{

if (page_array[IDX(dw0/PAGE_SIZE)] != PAGE_FREE &&

page_array[IDX(dw0/PAGE_SIZE)] != PAGE_SHARED

#if defined(CONFIG_VERSION_X0)

&& page_array[IDX(dw0/PAGE_SIZE)] != client.id.task

#endif

)

{

#if 1

printf( ”sigma0 : page %x requested twice , old=%x , new=%x\n”, dw0,

page_array[IDX(dw0/PAGE_SIZE)], client.id.task);

// enter_kdebug("page requested twice");

#endif

dw0 = dw1 = dw2 = msg = 0;

}

else

{

/* mark only free pages ­ ignore the shared!!! */

if (page_array[IDX(dw0/PAGE_SIZE)] == PAGE_FREE)

#if defined(CONFIG_VERSION_X0)

page_array[IDX(dw0/PAGE_SIZE)] = client.id.task;

#elif defined(CONFIG_VERSION_X1)

page_array[IDX(dw0/PAGE_SIZE)] = PAGE_GONE;

#endif

/* map 4k page, writeable */

dw0 &= PAGE_MASK;
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dw1 = dw0 | (PAGE_BITS << 2) | 2;

dw2 = 0;

}

}

break;

#if defined(CONFIG_ARCH_X86)

case 0x40000004 ... 0xC0000000:

#elif defined(CONFIG_ARCH_ARM_EP7211)

case 0xFFFFFFFF: /* dummy */

#endif

{

#ifdef VERBOSE

printf( ”sigma0 : s0 r e c e i v e s %x from %x\n”,

dw0, client.raw);

#endif

/* map 4M page */

//enter_kdebug("s0: map superpage");

dw0 = (dw0 & SUPERPAGE_MASK) + 0x40000000;

dw1 = dw0 | (SUPERPAGE_BITS << 2) | 2; /* map superpage writeable

and uncacheable !!! */

dw2 = 0;

}

break ;

}

}

//urriy

// r = l4_ipc_reply_and_wait(client, (void*) msg,

r = l4_ipc_reply_and_wait(client, ( void *) msg,

dw0, dw1, dw2,

&client, rcv_dsc,

&dw0, &dw1, &dw2,

L4_IPC_NEVER, &result);

if (L4_IPC_ERROR(result))

{

#ifdef VERBOSE

printf( ”%s : e r r o r reply and wait (% x ) \n”,

__FUNCTION__, result.raw);

#endif

break ;

}

}

}

}
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#endif /* !CONFIG_L4_NEWSIGMA0 */

6.6.2 Interrupt Handling

Listing 6.3: Interrupt Handling

/*************************************************************

L4 IPC example

Interrupt handling.

Root task creates a thread, which then becomes a handler for

interrupt using ipc_call system call.

*************************************************************/

#include ” u r r i y . h”

void foo ( void);

#define FOOSTACKSIZE 1024

l4_threadid_t foo_tid; //thread id of target thread

l4_threadid_t main_tid; //thread id of the root_task

dword_t foostack[FOOSTACKSIZE]; //stack

dword_t dummy;

//________________________________FOO

void foo()

{

outstring( ”\n foo : s u c c e s s f u l l y s t a r t e d with thread id : ”);

outhex32(l4_myself().raw);

l4_msgdope_t dope;

dword_t dw0, dw1, dw2;

dword_t old0, old1, old2;

int firsttime = 1;

outstring( ”\n foo : handling i t e r r u p t ”);

l4_threadid_t intr;

intr.raw = 16 + 1; //remember ­­ interrupt number plus one

while (1)

{

l4_ipc_receive(

intr,

L4_IPC_SHORT_MSG,
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&dw0,

&dw1,

&dw2,

L4_IPC_TIMEOUT(0, 0, 0, 1, 0, 0),

&dope);

if (dope.raw == 0x20)

{//association succeeds, no interrupt is received

outstring( ” . ”);

if (firsttime)

{

enter_kdebug( ” you can now check i n t e r r u p t a s s o c i a t i o n s using key ””

I ”””);

firsttime = 0;

}

}

if (dope.raw == 0x10)

{//non existing

outstring( ”\n i n t e r r u p t i s already a s s o c i a t e d ! ”);

break ;

}

if (dope.raw == 0x00)

{//pending

outstring( ”,−−−−−−−−−−−−−−−−−−−,”);

}

outstring( ”\n msgdope = ”);outhex32(dope.raw);

if ((dw0 != old0)||(dw1 != old1)||(dw2 != old2))

{

outstring( ”\n dw0 = ”);outhex32(dw0);

outstring( ”\n dw1 = ”);outhex32(dw1);

outstring( ”\n dw2 = ”);outhex32(dw2);

old0 = dw0;

old1 = dw1;

old2 = dw2;

}

}

while (1){l4_sleep(1000000);outchar( ’+ ’ );}

}

//_____________________MAIN ­­ root task

int main(dword_t mb_magic, struct multiboot_info_t* mbi)

{

//thread id of the root_task

main_tid = l4_myself();

//thread id of the pager of the root task

l4_threadid_t my_pager = get_current_pager(l4_myself());
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foo_tid=main_tid;

foo_tid.id.thread = 8;

// foo thread creation using system call thread_ex_regs

l4_thread_ex_regs(

foo_tid, //target thread id

(dword_t) foo, //IP

(dword_t) &foostack[FOOSTACKSIZE ­ 1], //SP

&my_pager, //preempter thread id of target thread

&my_pager, //pager thread id of target handler

&dummy, //old flags ­­ don’t care

&dummy, //old IP ­­ don’t care

&dummy); //old SP ­­ don’t care

outstring( ”\n r o o t t a s k : new thread i s crea ted with thread id ”);

outhex32(foo_tid.raw);

while (1){l4_sleep(1000000);outchar( ’− ’ );}

}
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7 Conclusions and Future Work

Every complete system would work reliable only in absence of errors in every dis­

tinguishable part and in protocols between these parts.

The results obtained in this thesis have showed that L4Ka::Hazelnut microkernel

not only has negligible errors in implementation, but also vulnerable to malicious behavior

of user­level tasks. Thus, even main principles of it fail. There are some Denial of Service

attacks possible (see [16]) via page fault mechanism provided by L4Ka kernel. Scheduling

principle also vulnerable to Denial of Service attacks.

Immediate cause of this error­prone behavior of operating system is that whole sys­

tem built on top can not be surely reliable. This particular version can not be used in em­

bedded systems, and correctness and fault­tolerance can not be proven because of problems

even on abstraction level.

For all these reasons, our chair develops new microkernel operating system, which

in the near future will be proven. Safety will be provided by correctness and liveness proof

of processor VAMP (DLX processor with pipeline), programming language C0 (subset of

C), compiler and operating system SOS (Simple Operating System). Last two to be written

in C0, guarantee the reliability. All parts of a system will be proven in Isabelle (automated

theorem proover).
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