
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008 1819

The reduction from Theorem 1.1 to Lemma 1.1 utilizes Jensen’s in-
equality, majorization (Marshall and Olkin, [2]), and a conditioning
argument; details can be found in Ordentlich [1].

Lemma 1.1 was proven by Ordentlich [1] using an involved combi-
natorial argument. It is the purpose of this correspondence to deliver
an elementary proof of Lemma 1.1, thereby giving an alternative short
derivation of Theorem 1.1.

II. A SHORT PROOF OF LEMMA 1.1

We shall perform induction n. It is simple to verify that (1) is true for
n = 2. Suppose it holds for n < m. When n = m � 3, without loss
of generality assume a1 � a2 � � � � � am, and consider the nontrivial
case of 0 < am � 1. Let j be an integer such that k = m � 2j > 0.
Denote S = m�1

i=1
Ziai=am. We have

Pr

m

i=1

Ziai 2 [�k; k]

= Pr (Zm + S 2 [�k=am; k=am])

� Pr (Zm + S 2 [�k; k])

=
1

2
fPr (S 2 [�k � 1; k � 1]) +Pr (S 2 [�k+1; k+1])g

=
1

2
fPr (S 2 [�k + 1; k � 1]) +Pr (S 2 [�k�1; k+1])g

where the formula Pr(A) + Pr(B) = Pr(A [ B) + Pr(A \ B) is
used in the last equality.

Denote S0 = m�2

i=1
Zi. If k � 1 > 0, then by the induction hy-

pothesis (recall that k � 1 = m � 1 � 2j)

Pr (S 2 [�k + 1; k � 1]) � Pr S0 2 [�k + 1; k � 1] : (2)

If k � 1 = 0 then m is an odd integer. Notice that (2) is still valid
because the right-hand side is zero. Similarly

Pr (S 2 [�k � 1; k + 1]) � Pr S0 2 [�k � 1; k + 1] :

Together we have, as long as k = m � 2j > 0

Pr

m

i=1

Ziai 2 [�k; k]

�
1

2
Pr S0 2 [�k+1; k�1] + Pr S0 2 [�k�1; k+1]

=
1

2
Pr S0 2 [�k�1; k�1] + Pr S0 2 [�k+1; k+1]

= Pr Zm�1 +

m�2

i=1

Zi 2 [�k; k]

where for the last equality we consider the two cases Zm�1 = 1 and
Zm�1 = �1. Thus, the claim holds when n = m, and Lemma 1.1 is
proven.
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Computing Binary Combinatorial Gray Codes
Via Exhaustive Search With SAT Solvers

Igor Zinovik, Daniel Kroening, and Yury Chebiryak

Abstract—The term binary combinatorial Gray code refers to a list of
binary words such that the Hamming distance between two neighboring
words is one and the list satisfies some additional properties that are of in-
terest to a particular application, e.g., circuit testing, data compression, and
computational biology. New distance-preserving and circuit codes are pre-
sented along with a complete list of equivalence classes of the coil-in-the-box
codes for codeword length 6 with respect to symmetry transformations of
hypercubes. A Gray-ordered code composed of all necklaces of the length
9 is presented, improving the known result with length 7.

Index Terms—Binary sequences, cyclic codes, Gray codes.

I. INTRODUCTION

The term combinatorial Gray code refers to a list of combinatorial
objects such that the objects differ in some prescribed way [1]. If the
list is composed of binary words, the codes are called binary combi-
natorial Gray codes. The survey [1] names a number of applications
of binary Gray codes, including circuit testing, signal encoding, data
compression, and parallel computing. Recent examples are related to
such diverse areas as analog-to-digital conversion, diagnosis of mul-
tiprocessors, and computational biology, and can be found in [2], [3],
and [4], respectively.

The construction of combinatorial codes can often be viewed as
a search for a certain path in a graph where the vertices represent
combinatorial objects. The algorithms proposed for the construction of
long codes restrict the search to paths with a specific symmetry. While
such restriction of the search is known to enhance the efficiency of the
algorithms dramatically, this approach suffers from two drawbacks:
a) construction of the longest code is impossible if the code does not
possess the symmetry assumed by the algorithm; b) a classification of
the codes is possible only within the symmetry class that is targeted
by the algorithm.

Exhaustive search for codes is computationally infeasible even for
low-dimensional problems. The efficiency of the search algorithms cru-
cially depends on the employed backtracking methods. Experimental
results with reachability analysis in computer-aided design [5] indicate
that the backtracking implemented in the modern satisfiability (SAT)
solvers for propositional logic [6] allows for an efficient analysis of the
large-scale graphs emerging in model checking. A SAT solver is a tool
that finds a satisfying assignment of a propositional formula given in
conjunctive normal form (CNF) or concludes that such an assignment
does not exist. State-of-the-art SAT solvers are known to be capable
of handling problems with hundreds of thousands of variables within a
practical amount of time.
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The objective of this correspondence is the evaluation of SAT-based
techniques for the construction of binary combinatorial codes. The cor-
respondence is organized as follows: In Section II, we present an en-
coding of a binary code called the coil-in-the-box code [7] as a Boolean
formula and the application of SAT solvers to classify such codes with
respect to symmetry transformations of hypercubes. This classification
is of interest for the Glass model of gene regulatory networks [8]. In
Section III, we extend the proposed encoding to the construction of
a generalization of coil-in-the-box codes called circuit codes [9], and
distance-preserving codes [10]. In Section IV, we present a SAT-based
method for generating a subset of the circuit codes that are used in
analog-to-digital conversion devices [2], and a Gray code for necklaces
longer than those presented in [1]. The tables in the Appendix summa-
rize the results of our experiments and report the coordinate sequences
of the new codes.

II. COIL-IN-THE-BOX CODES

A. SAT Encoding

A coil in a graph is a simple cycle without chords, which is defined
as follows.

Definition 1 (Coil-in-the-Box [7]): A simple cycle in an n-dimen-
sional cube is called a coil-in-the-box1 if every edge in the n-cube that
joins two vertices of the cycle is an edge of this cycle.

If the nodes of an n-dimensional unit cube are labeled by their coor-
dinates, a coil-in-the box is represented by a Gray code of binary words
Wi of length n with i = 1; . . . ; N . The numberN of words in the code
is called the period of the code. The codes of the maximum period with
n up to 6 were generated by a computer search [7], [11]. The construc-
tion of the codes of maximum period with words of length 7 shown in
[12] requires a restriction of the search to the codes that contain a se-
quence of n+1 wordsWi; . . . ;Wi+n such that the Hamming distance
dH(Wi;Wi+n) equals n (we will call such sequence a diagonal of the
n-cube). The exact value of the maximum period is unknown for n 8.
The lower and upper bounds for the maximum period is a function of n
[7]. The most recent results provide only lower bounds for the maximal
period and generate the codes via evolutionary techniques [13].

In order to apply SAT solvers to generate codes, we define Boolean
variables Xij with i 2 f1; . . . ; Ng and j 2 f1; . . . ; ng such that the
true valuation of the variable denotes a 1 in position j of the binary
word number i. Auxiliary Boolean variables H0

kl and H1
kl encode the

Hamming distance dH(Wk;Wl) between words Wk and Wl such that
the true valuation ofH�

kl with� 2 f0; 1g determines that the words are
identical or the distance equals 1, respectively. The following example
illustrates the construction of a SAT instance for the search of a Gray
code with period 3 which is composed of word of length 2. (A detailed
description of the encoding for all codes studied in this correspondence
can be found in [14].)

Example: Construction of SAT instance for the search for a Gray
code with n = 2 and N = 3.

The auxiliary variables are defined as follows:

H0
13 := X11 , X31 ^ X12 , X32

H1
12 := X11 , :X21 ^ X12 , X22 _

X11 , X21 ^ X12 , :X22

H1
13 := X11 , :X31 ^ X12 , X32 _

X11 , X31 ^ X12 , :X32

H1
32 := X31 , :X21 ^ X32 , X22 _

X31 , X21 ^ X32 , :X22 :

1In some references, the codes are called snakes, but other articles use the
term snake for noncyclic codes.

Thus, the condition that the distance between the words equals one
and the first and the last words are distinct, is written as follows:

H1
12 ^H1

13 ^H1
23 ^ :H0

13:

This formula can be used as input to a SAT solver. SAT solvers deter-
mine whether the propositional formula is satisfiable or not and in the
former case, return a satisfying assignment to the variables. The output
obtained is decoded into the sequence of the binary words.

The construction above yields N � n independent variables Xij ,
which correspond to the nodes of the cycle. We also tested an alter-
native encoding using the coordinate sequences instead of the node
variables Xij . A coordinate sequence is a list fsijsi 2 f1; . . . ; ngg,
i 2 f1; . . . ; N � 1g of the unique coordinates in which Wi and Wi+1

differ. Thus, the code is uniquely defined by a choice of the first word
W1 and a coordinate sequence fsig.

For encoding coordinate sequences, every binary integer si is repre-
sented by dlog(n)eBoolean variablesSiq with q 2 f1; . . . ; dlog(n)eg.
The true valuation of Siq denotes a 1 in position q of the binary word
si, while the false encodes a 0. In this encoding, the number of the
variables is (N � 1) � dlog(n)e + n variables, where Xij is defined
recursively as a function of S(i�1)q and X(i�1)j

Xij :=
:X(i�1)j : if si�1 = j

X(i�1)j : otherwise.
(1)

The computation of the codes was carried out using a PC with an
Intel Xeon (3.0-GHz, 4-GB RAM, running Linux) with a timeout of
24 h. The satisfying assignments were obtained using the SMT-solver
Yices [15] for codes with codeword length up to 8.

While the coils computed did not surpass the longest known coil of
period 96; the experiments indicate that the codes with periods up to
82 can be generated within 6 h. The results show that the sequence
encoding reduces the run time for the cases without satisfying assign-
ments (the UNSAT cases), e.g., in case n = 5,N = 16, UNSAT for the
node encoding is returned in 257 s while the sequence encoding needs
only 0.4 s. The node encoding was faster for all tests with satisfying
assignments except for the maximum coil in dimension 7 (the runtime
is 36 min compared to 162 min for the node encoding).

Unlike the search method for the maximum known codes described
in [12], the presented construction allows for the generation of max-
imum coils without the cube diagonals (a longest coil in dimension 7
that has no cube diagonal is shown in the Appendix ). The suggested
method relies on a direct encoding of the code definition without any
additional restrictions, and thus, the search space contains all coils for
a prescribed dimension and length. The UNSAT cases obtained as a re-
sult of incrementally increasing the period N serve as a proof that the
previous satisfying assignment constitutes a maximum-period code for
the prescribed dimension.

B. Classification of Codes in Dimension 6 and 7

The absence of restrictions narrowing the solution space makes it
possible to use the encoding to analyze all combinatorial codes for a
prescribed dimension. The classification of the coils-in-the-box codes
with respect to axis permutations of the n-cube is of interest in Glass
models for neural and gene regulatory networks. In this model, active
and inactive states of a particular gene are depicted by 1=0, and a bi-
nary codeword represents a set of the genes in a cell at a given time
instant. Coil-in-the box codes correspond to stable periodic processes
which describe biologically relevant dynamics of the gene sets. Thus,
the number of the equivalence classes of the codes indicates how many
different types of cells can be regulated by the set of the genes.

The number of the equivalence classes up to dimension 5 is com-
puted in [8]. The lower bounds for the number of the classes in dimen-
sion 6 has been obtained in [16]. The presented classification algorithm
is a modified ALL-SAT procedure as described in [16]. Every assign-
ment obtained is a representative of an equivalence class. MiniSAT was
used for the computations, and the results are summarized in Table I.
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TABLE I
THE NUMBER OF EQUIVALENCE CLASSES FOR THE

COILS-IN-THE-BOX FOR DIMENSION 6

The coordinate sequences for the equivalence classes of the longest
coils in dimension 6 are presented in the Appendix. One of four classes
is found to contain no diagonal, and one class represents the coils with
periodic coordinate sequences.

The exhaustive search for all maximum coils in dimension 7 is
known to be computationally demanding [12]: the search for coils with
a cube diagonal took more than one month on a network consisting
of five SUN Microsystems SparcCenter 1000’s with two processors
each. We have applied the propositional encoding described above for
the classification of the maximum coils (N = 48) in dimension 7. The
full classification could not be archived within a timeout of 100 days.
The number of the equivalence classes found within the timeout is
126, where 74 classes do not have the cube diagonal, i.e., they cannot
be found by the algorithm used in [12].

III. NEW CIRCUIT CODES, AND DISTANCE-PRESERVING CODES

The SAT encoding described above can be modified for the construc-
tion of circuit codes [9] with different spreads and distance preserving
codes [10].

A. Circuit Codes

Circuit codes are defined as a generalization of the coil-in-the-box
definition (1) as

8k; l : dH(Wk;Wl) < � ) dC(Wk;Wl) < � (2)

where the positive integer � is called the spread of the code [17]. Thus,
the circuit codes with the spread � = 2 are the coils-in-the-box, and the
codes with � = 1 of period N = 2n are the Hamiltonian cycles in the
n cube. Moreover, any code with spread �1 is a circuit code with spread
�2 if �1 � �2 [17]. This property implies that the period of maximum
circuit codes with a spread �1 does not exceed the maximum period of
the codes with �2 � �1.

The construction of the longest known circuit codes is based on ei-
ther an exhaustive search or an algorithm that restricts the search to the
codes with periodic coordinate sequences [9]. The codes can be gener-
ated from the existing ones from lower dimensions n (e.g., [18]).

We conducted computations aiming to improve the results in [9],
which present the longest known circuit codes with spread � � 7.
MiniSAT finds a satisfying assignment forn = 11, � = 4, andN = 60
within 23 min. Six codes with greater periods were obtained within
the timeout of 24 h. The coordinate sequences of the found codes are
presented in the Appendix (see Table IV).

To the best of our knowledge, there are no circuit codes reported for
the spreads � > 7. The SAT encoding was used to compute codes with
spread � up to 17. We present four codes that are longer than known
lower bounds of [17] in the Appendix. We also show four codes with
the periods whose optimality was proved in [17].

B. Distance-Preserving Codes

The distance-preserving codes are defined by the following equation:

8k; l : dC(Wk;Wl) � � ) dH(Wk;Wl) = dC(Wk;Wl) : (3)

TABLE II
COORDINATE SEQUENCES OF EQUIVALENCE CLASSES OF LONGEST COILS IN

DIMENSION 6 (BOLD TRANSITIONS BELONG TO A DIAGONAL)

TABLE III
AN EXAMPLE COORDINATE SEQUENCE OF A LONGEST COIL IN

DIMENSION 7 WITHOUT DIAGONAL

This code preserves the Hamming distance between the codewords
for all distances up to a threshold m. The distance-preserving code
in dimension n is denoted as hm;ni-code, and the hm;ni-codes with
N = 2n are called the complete codes. Two types of algorithms are re-
ported for distance-preserving codes. The method shown in [10] gener-
ates the codes only of a certain lengthL = m2n�dm=2e. The algorithm
proposed in [19] constructs hn�1; ni-codes with period (n�1)2dn=2e.

In contrast to the known methods, the SAT encoding is easy to
modify for the construction of the codes with an arbitrary prescribed
codeword length n and threshold m. As examples, we computed the
codes h6; 7i with a maximum period of 100, and h7; 8i with a period
of 126 (see the Appendix ). While the values of the maximum periods
and the lower bounds for the periods of such codes were calculated in
[19], to the best of the authors’ knowledge, the coordinate sequences
for these codes were not yet reported in the literature.2

IV. NEW SINGLE-TRACK CIRCUIT CODES AND NECKLACES

Single-track circuit codes introduced in [21] are a subclass of circuit
codes which are used for digital–to-analog conversion. The single-track
codes are circuit codes that possess an additional property defined in
terms of component sequences [2].

Definition 2 (Component Sequence): Let C be a cyclic path on the
n-cube consisting of N binary codewords W1; . . . ;WN , where Wi 2
fw1

i ; . . . ; w
N
i g. The component sequence j of C , denoted Cj , is the

binary periodic sequence wj
1
; . . . ; wj

N consisting of component j of
each of the codewords of C (1 � j � n).

The formal definition of the single-track codes reads as follows.

Definition 3 (Single-Track Circuit Codes): Let C be a circuit code
with period N , spread �, composed of codewords of length n. Then C
is said to be a single-track circuit code if its component sequence Cj

is a cyclic shift of sequence C1 for each 2 � j � n. We denote these
codes by hn; �; Ni.

For every n, there is a hn; n; 2ni code called the trivial code that has
the coordinate sequence composed of two repeating n-cube diagonals.
Single-track circular codes of longer periods are constructed in [2] by
embedding a set of the codewords into the known circuit codes. The
codes are generated up to � � 6 using the circuit codes from [9] that
have the spread � bounded by 7. A single-track circuit code is called
optimal if there is no single-track circuit code with the same period
but composed of codewords of shorter length. Two conditions were
used in [2] to determine the optimality of the codes: a) the code period
does not exceed the period of the corresponding circuit codes, and b)
if a single-track code exists, its period equals an even multiple of the
codeword length.

2Three months after the manuscript was submitted to IEEE TRANSACTIONS

OF INFORMATION THEORY, code h7; 8i with a period of 200 was reported in
[20].
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TABLE IV
EXAMPLES OF CIRCUIT CODES

TABLE V
EXAMPLES OF DISTANCE PRESERVING CODES

We conducted computations aimed to construct single-track circuit
codes with the periods longer than the results in [2]. No satisfying
assignments were obtained within a 24-h timeout. UNSAT was re-
turned for five test cases: h7; 3; 28i, h8; 3; 24i, h9; 3; 72i, h8; 4; 24i,
and h9; 4; 36i. The result proves optimality of the corresponding five
single-track circuit codes found in [2] for the same �.

The satisfying assignments for the test cases with � = 7, which
is greater than in [2], were computed for n = 10; 11; 12, and
N = 2n within 2 h. The corresponding coordinate sequences (see the
Appendix ) indicate that the obtained codes are nontrivial. We also
conducted a search for nontrivial single-track circuit codes with � = 7

for n = 7; 8; and 12. The results of the computations show that there
are no nontrivial single-track circuit codes in these cases.

The longest known circuit and single-track circuit codes have been
constructed by restricting the search to the codes that possess various
internal symmetries. The methods rely on the generation of the Gray-
ordered binary necklaces as a first step of the construction [9]. An
n-bead binary necklace is an equivalence class of binaryn-tuples under
rotation [1]. Necklace-based construction of the codes is proved in [22],
[23] to be very successive for small �. The methods are not easily
adapted to produce the codes with � larger than 7 because of a rapid
increase of the number of necklaces.

While several known algorithms provide a complete list of the neck-
laces with a prescribed codeword length n, none of them computes
a Gray code for necklaces. Efficient algorithms producing Gray-or-
dered necklaces are of interest in combinatorics [24], and the question
whether a complete list of Gray-ordered necklaces exists for n > 7 is
among the open problems of combinatorial Gray codes (a parity argu-
ment shows that this is impossible for an even n) [1].

The results of our computations for six-bead necklaces indicate that
there is no Gray code with length greater than 13 codewords. The Gray
codes for eight-bead necklaces were obtained up to 33 codewords. The
complete list of nine-bead necklaces contains 60 codewords [25], thus,
a propositional formula describing the list was generated and conse-
quently used as input to the SAT solver. A satisfying assignment has

TABLE VI
EXAMPLES OF NONTRIVIAL SINGLE-TRACK CIRCUIT CODES

WITH SPREAD � = 7

TABLE VII
THE COORDINATE SEQUENCE OF NINE-BEAD NECKLACE

(FIRST CODEWORD IS ZERO)

been obtained within 68 min using the encoding of the coordinate se-
quences. The coordinate sequence of the Gray code is presented in the
Appendix. To the best of our knowledge, the Gray code consisting of
all nine-bead necklaces was not yet reported in the literature.

V. CONCLUSION

We present a propositional encoding for the generation of coil-in-
the-box codes, circuit codes, distance-preserving codes, single-track
codes, and necklaces. The method we suggested for the construction
of the codes utilizes efficient backtracking algorithms implemented in
state-of-the-art propositional SAT solvers. The encoding enforces an
exhaustive search over all codes satisfying the definition, and thus it
can be used for a classification of the codes. Search within a desired
subclass of the codes can be conducted by using additional blocking
clauses.

We report new lower bounds for ten circuit codes. We present three
new nontrivial single-track circuit codes and two new distance-pre-
serving codes.

An advantage of the SAT-based approach is that a SAT solver returns
a definite answer whether a code with given parameters exists or not.
The negative answer may serve as a proof of optimality of the codes.
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Using this approach, we proved optimality for five known single-track
circuit codes.

We found all equivalence classes with respect to the n-cube sym-
metry transformations for the coil-in-the-box codes in dimension 6,
and obtained a lower bound, namely 126, on the number of equivalence
classes for longest coils in dimension 7. We also proved by construc-
tion the existence of the Gray code for the complete list of nine-bead
necklaces, thus improving a known result for seven-bead necklaces.

APPENDIX

The results of our experiments and the coordinate sequences of the
new codes are shown in Tables II–VII.
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